×

General variational model reduction applied to incompressible viscous flows. (English) Zbl 1155.76049

Summary: We introduce a method that allows the calculation of an approximate proper orthogonal decomposition (POD) without the need to perform a simulation of the full dynamical system. Our approach is based on an application of the density matrix renormalization group to nonlinear dynamical systems, but has no explicit restriction on the spatial dimension of the model system. The method is not restricted to fluid dynamics. The applicability is exemplified on the incompressible Navier-Stokes equations in two spatial dimensions. Merging of two equal-signed vortices with periodic boundary conditions is considered for low Reynolds numbers \(Re\leqslant 800\) using a spectral method. We compare the accuracy of a reduced model, obtained by our method, with that of a reduced model obtained by standard POD. To this end, error functionals for the reductions are evaluated. It is observed that the proposed method is able to find a reduced system that yields comparable or even superior accuracy with respect to standard POD method results.

MSC:

76M30 Variational methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
76M22 Spectral methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] DOI: 10.1016/S0550-3213(01)00073-6 · Zbl 1097.81509 · doi:10.1016/S0550-3213(01)00073-6
[2] DOI: 10.1063/1.869027 · Zbl 1027.76516 · doi:10.1063/1.869027
[3] Leipholz, Theory of Elasticity. (1974) · doi:10.1007/978-94-010-9885-4
[4] Landau, Hydrodynamik (1991)
[5] Gottlieb, Numerical Analysis of Spectral Methods: Theory and Application. (1977) · Zbl 0412.65058 · doi:10.1137/1.9781611970425
[6] DOI: 10.1088/0034-4885/43/5/001 · doi:10.1088/0034-4885/43/5/001
[7] Golub, Matrix Computations (1996)
[8] DOI: 10.1016/0021-9991(91)90007-8 · Zbl 0738.76050 · doi:10.1016/0021-9991(91)90007-8
[9] DOI: 10.1016/0021-9991(66)90014-3 · Zbl 0158.22606 · doi:10.1016/0021-9991(66)90014-3
[10] DOI: 10.1175/1520-0469(2001)0582.0.CO;2 · doi:10.1175/1520-0469(2001)0582.0.CO;2
[11] DOI: 10.1016/0377-0427(94)00077-4 · Zbl 0836.76070 · doi:10.1016/0377-0427(94)00077-4
[12] van Heijst, Nederlands Tijdschrift voor Natuurkunde 59 pp 321– (1993)
[13] DOI: 10.1063/1.881375 · doi:10.1063/1.881375
[14] DOI: 10.1080/00018738500101721 · doi:10.1080/00018738500101721
[15] Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry. (1998)
[16] Antoulas, Approximation of Large-Scale Dynamical Systems. (2005) · Zbl 1112.93002 · doi:10.1137/1.9780898718713
[17] DOI: 10.1017/S0022112001004803 · Zbl 1097.76563 · doi:10.1017/S0022112001004803
[18] Sirovich, Q. Appl. Math. XLV pp 561– (1987)
[19] Rowley, Phys. 189 pp 115– (2003)
[20] DOI: 10.1017/S0022112004002149 · Zbl 1065.76102 · doi:10.1017/S0022112004002149
[21] DOI: 10.1017/S0022112003006694 · Zbl 1067.76033 · doi:10.1017/S0022112003006694
[22] Lumley, The Structure of Inhomogeneous Turbulent Flows. (1967) · Zbl 0158.23602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.