×

A reduced-order-model Bayesian obstacle detection algorithm. (English) Zbl 1448.62020

Wood, David R. (ed.) et al., 2018 MATRIX annals. Cham: Springer. MATRIX Book Ser. 3, 17-27 (2020).
Summary: We develop an efficient Bayesian algorithm for solving the inverse problem of classifying and locating certain two dimensional objects using noisy far field data obtained by illuminating them with a radiating wave. While application of Bayesian algorithms for wave-propagation inverse problems is itself innovative, the principal novelty in this work is in using (i) a surrogate Bayesian posterior distribution computed using a generalised polynomial chaos approximation; and (ii) an efficient wave-propagation-specific reduced order model in place of the full multiple scattering forward model. We demonstrate the capability of this approach with simulations in which we accurately detect two dimensional objects, with shapes motivated by safety and security applications.
For the entire collection see [Zbl 1445.37004].

MSC:

62A01 Foundations and philosophical topics in statistics
62H30 Classification and discrimination; cluster analysis (statistical aspects)
41A10 Approximation by polynomials

Software:

TMATROM
Full Text: DOI

References:

[1] Bagheri, S., Hawkins, S.C.: A coupled FEM-BEM algorithm for the inverse acoustic medium problem. ANZIAM 56, C163-C178 (2015)
[2] Bui-Thanh, T., Ghattas, O.: An analysis of infinite dimensional Bayesian inverse shape acoustic scattering and its numerical approximation. J. Uncertainty Quant. 2, 203-222 (2014) · Zbl 1306.65270
[3] Chen, P., Schwab, C.: Sparse-grid, reduced-basis Bayesian inversion. Comput. Methods Appl. Mech. Engrg. 297, 84-115 (2015) · Zbl 1425.65020
[4] Chen, P., Schwab, C.: Sparse-grid, reduced-basis Bayesian inversion: nonaffine-parametric nonlinear equations. J. Comput Phys. 316, 470-503 (2016) · Zbl 1349.62076
[5] Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer (2012) · Zbl 1425.35001
[6] Daza, M.L., Capistrán, M.A., Christen, J.A., Guadarrama, L.: Solution of the inverse scattering problem from inhomogeneous media using affine invariant sampling. Math. Meth. Appl. Sci. 40, 3311-3319 (2017) · Zbl 1368.65169
[7] Ganesh, M., Hawkins, S.C.: A far-field based T-matrix method for two dimensional obstacle scattering. ANZIAM J. 51, C201-C216 (2009) · Zbl 1386.76146
[8] Ganesh, M., Hawkins, S.C.: A stochastic pseudospectral and T-matrix algorithm for acoustic scattering by a class of multiple particle configurations. J. Quant. Spectrosc. Radiat. Transfer 123, 41-52 (2013)
[9] Ganesh, M., Hawkins, S.C.: A high performance computing and sensitivity analysis algorithm for stochastic many-particle wave scattering. SIAM J. Sci. Comput. 37, A1475-A1503 (2015) · Zbl 1342.65008
[10] Ganesh, M., Hawkins, S.C.: Scattering by stochastic boundaries: hybrid low- and high-order quantification algorithms. ANZIAM J. 56, C312-C338 (2016)
[11] Ganesh, M., Hawkins, S.C.: Algorithm 975: TMATROM—a T-matrix reduced order model software. ACM Trans. Math. Softw. 44, 9:1-9:18 (2017) · Zbl 1484.78006
[12] Ganesh, M., Hawkins, S.C., Hiptmair, R.: Convergence analysis with parameter estimates for a reduced basis acoustic scattering T-matrix method. IMA J. Numer. Anal. 32, 1348-1374 (2012) · Zbl 1275.65074
[13] Ganesh, M., Morgenstern, C.: High-order FEM-BEM computer models for wave propagation in unbounded and heterogeneous media: Application to time-harmonic acoustic horn problem. J. Comp. Appl. Math. 37, 183-203 (2016) · Zbl 1382.76163
[14] Jiang, L., Ou, N.: Multiscale model reduction for Bayesian inverse problems of subsurface flow. J. Comput. Appl. Math. 319, 188-209 (2017) · Zbl 1524.65478
[15] Khlebtsov, N.: Anisotropic properties of plasmonic nanoparticles: depolarized light scattering, dichroism, and birefringence. J Nanophotonics 4, 041,587-041,587 (2010)
[16] Knapik, B.T., van der Vaart, A.W., van Zanten, J.H.: Bayesian recovery of the initial condition for the heat equation. Commun. Stat. 42, 1294-1313 (2013) · Zbl 1347.62057
[17] Lamberg, L., Muinonen, K., Ylönen, J., Lumme, K.: Spectral estimation of Gaussian random circles and spheres. J. Comput. Appl. Math. 136, 109-121 (2001). https://doi.org/10.1016/s0377-0427(00)00578-1 · Zbl 0984.62075 · doi:10.1016/s0377-0427(00)00578-1
[18] Lu, F., Morzfeld, M., Chorin, A.J.: Limitations of polynomial chaos expansion in the Bayesian solution of inverse problems. J. Comput Phys. 282, 138-147 (2015) · Zbl 1351.62075
[19] Mishchenko, M.I., et al.: Comprehensive thematic T-matrix reference database: A 2013-2014 update. J Quant Spectrosc Radiat Transfer 146, 249-354 (2014)
[20] Palafox, A., Capistrán, M.A., Christen, J.A.: Effective parameter dimension via Bayesian model selection in the inverse acoustic scattering problem. Math. Probl. Eng. 2014, 1-12 (2014) · Zbl 1407.62448
[21] Palafox, A., Capistrán, M.A., Christen, J.A.: Point cloud-based scatterer approximation and affine invariant sampling in the inverse scattering problem. Math. Meth. Appl. Sci. 40, 3393-3403 (2017) · Zbl 1368.65173
[22] Schillings, C., Schwab, C.: Sparse, adaptive Smolyak quadratures for Bayesian inverse problems. Inverse Problems 29, 1-28 (2013) · Zbl 1278.65008
[23] Somerville, W.R.C., Auguié, B., Ru, E.C.L.: Severe loss of precision in calculations of T-matrix integrals. J Quant Spectrosc Radiat Transfer 113, 524-535 (2012)
[24] Stuart, A.: Inverse problems: A Bayesian perspective. Acta Numer. 19, 451-559 (2010) · Zbl 1242.65142
[25] Wang, Y., Ma, F., Zheng, E.: Bayesian method for shape reconstruction in the inverse interior scattering problem. Math. Probl. Eng. 2015, 1-12 (2015) · Zbl 1394.78013
[26] Waterman, P.C.: Matrix formulation of electromagnetic scattering. Proc. IEEE 53, 805-812 (1965) · Zbl 1400.78014
[27] Waterman, P.C.: New formulation of acoustic scattering. J. Acoust. Soc. Am. 45, 1417-1429 (1969) · Zbl 0187.24504
[28] Yang, K.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.