×

On the stability of the triangular equilibrium points in the elliptic restricted three-body problem with radiation and oblateness. (English) Zbl 1473.70017

Rassias, Themistocles M. (ed.) et al., Mathematical analysis and applications. Cham: Springer. Springer Optim. Appl. 154, 273-286 (2019).
Summary: The elliptic restricted three-body problem when the primary is a source of radiation and the secondary is an oblate spheroid is considered and the stability of the triangular equilibrium points is studied. The transition curves separating stable from unstable regions are determined in the parametric space both analytically and numerically. Our results show that the oblateness and radiation parameters do not cause significant changes on the topology of the stability regions in the parametric plane defined by the mass parameter and eccentricity. However, in the remaining parametric planes, we observe that by increasing the values of the parameters which are kept fixed stability gives place to instability.
For the entire collection see [Zbl 1432.65003].

MSC:

70F07 Three-body problems
70F15 Celestial mechanics
70K20 Stability for nonlinear problems in mechanics
70K42 Equilibria and periodic trajectories for nonlinear problems in mechanics
Full Text: DOI

References:

[1] E.I. Abouelmagd, J.L.G. Guirao, A. Mostafa, Numerical integration of the restricted three-body problem with Lie series. Astrophys. Space Sci. 354, 369-378 (2014) · doi:10.1007/s10509-014-2107-4
[2] K.I. Antoniadou, A.S. Libert, Origin and continuation of 3/2, 5/2, 3/1, 4/1 and 5/1 resonant periodic orbits in the circular and elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 130(41), 30 (2006) · Zbl 1447.70005
[3] H.X. Baoyin, C.R. McInnes, Solar sail halo orbits at the sun-earth artificial L1 point. Celest. Mech. Dyn. Astron. 94, 155-171 (2006) · Zbl 1125.70020 · doi:10.1007/s10569-005-4626-3
[4] A.S. Beevi, R.K. Sharma, Oblateness effect of Saturn on periodic orbits in the Saturn-Titan restricted three-body problem. Astrophys. Space Sci. 340, 245-261 (2012) · doi:10.1007/s10509-012-1052-3
[5] A. Bennett, Characteristic exponents of the five equilibrium solutions in the elliptically restricted problem. Icarus 4, 177-187 (1965) · doi:10.1016/0019-1035(65)90060-6
[6] N. Bosanac, K.C. Howell, E. Fischbach, Exploring the impact of a three-body interaction added to the gravitational potential function in the restricted three-body problem, in 23rd AAS/AIAA Space Flight Mechanics Meeting (Hawaii, AAS, 2013), pp. 13-490
[7] R. Broucke, Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA J. 7, 1003-1009 (1969) · Zbl 0179.53301 · doi:10.2514/3.5267
[8] C.C. Conley, Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16, 732-746 (1968) · Zbl 0197.21105 · doi:10.1137/0116060
[9] J.M.A. Danby, Stability of the triangular points in the elliptic restricted problem of three bodies. Astron. J. 69, 165-172 (1964) · doi:10.1086/109254
[10] M.K. Das, P. Narang, S. Mahajan, M. Yuasa, Effect of radiation on the stability of a retrograde particle orbit in different stellar systems. Planet. Space Sci. 57, 836-845 (2009) · doi:10.1016/j.pss.2009.02.007
[11] Á. Dena, M. Rodríguez, S. Serrano, R. Barrio, High-precision continuation of periodic orbits. Abstr. Appl. Anal. 2012, Article ID 716024, 12 (2012) · Zbl 1248.65130
[12] B. Érdi, I. Nagy, Zs. Sándor, Á. Süli, G. Fröhlich, Secondary resonances of co-orbital motions. Mon. Not. R. Astron. Soc. 381, 33-40 (2007) · doi:10.1111/j.1365-2966.2007.12228.x
[13] N. Haghighipour, J. Couetdic, F. Varadi, W.B. Moore, Stable 1:2 resonant periodic orbits in elliptic three-body systems. Astrophys. J., 596, 1332-1340 (2003) · doi:10.1086/378119
[14] K.C. Howell, D.C. Davis, A.F. Haapala, Application of periapse maps for the design of trajectories near the smaller primary in multi-body regimes. Math. Probl. Eng. 2012, Article ID 351759, 22 (2012) · Zbl 1264.70030
[15] V.S. Kalantonis, C.N. Douskos, E.A. Perdios, Numerical determination of homoclinic and heteroclinic orbits at collinear equilibria in the restricted three-body problem with oblateness. Celest. Mech. Dyn. Astr. 94, 135-153 (2006) · Zbl 1125.70004 · doi:10.1007/s10569-005-4441-x
[16] V.S. Kalantonis, E.A. Perdios, A.E. Perdiou, The Sitnikov family and the associated families of 3D periodic orbits in the photogravitational RTBP with oblateness. Astrophys. Space Sci. 315, 323-334 (2008) · doi:10.1007/s10509-008-9838-z
[17] T.A. Kotoulas, G. Voyatzis, Three dimensional periodic orbits in exterior mean motion resonances with Neptune. Astron. Astrophys. 441, 807-814 (2005) · Zbl 1093.70007 · doi:10.1051/0004-6361:20052980
[18] T. Kovács, Stability chart of the triangular points in the elliptic-restricted problem of three bodies. Mon. Not. R. Astron. Soc. 430, 2755-2760 (2013) · doi:10.1093/mnras/stt082
[19] H. Lei, B. Xu, Families of impulsive transfers between libration points in the restricted three-body problem. Mon. Not. R. Astron. Soc. 461, 1786-1803 (2016) · doi:10.1093/mnras/stw1391
[20] J. Llibre, R. Martínez, C. Simó, Transversality of the invariant manifolds associated to the Lyapunov family of the periodic orbits near L_2 in the restricted three-body problem. J. Diff. Eqs 58, 104-156 (1985) · Zbl 0594.70013 · doi:10.1016/0022-0396(85)90024-5
[21] V.V. Markellos, Numerical investigation of the planar restricted three-body problem III: closed branches of family f and related periodic orbits of the elliptic problem. Celes. Mech. 12, 215-224 (1975) · Zbl 0323.70011 · doi:10.1007/BF01230213
[22] V.V. Markellos, E.A. Perdios, P. Labropoulou, Linear stability of the triangular equilibrium points in the photogravitational elliptic restricted problem, I. Astrophys. Space Sci. 194, 207-213 (1992) · Zbl 0758.70007 · doi:10.1007/BF00643991
[23] V.V. Markellos, E.A. Perdios, C. Georgiou, Linear stability of the triangular equilibrium points in the photogravitational elliptic restricted problem, II. Astrophys. Space Sci. 199, 23-33 (1993) · Zbl 0767.70007 · doi:10.1007/BF00612974
[24] V.V. Markellos, E.A. Perdios, K. Papadakis, The stability of inner collinear equilibrium point in the photogravitational elliptic restricted problem. Astrophys. Space Sci. 199, 139-146 (1993) · Zbl 0767.70006 · doi:10.1007/BF00612984
[25] R. Meire, A contribution to the stability of the triangular points in the elliptic restricted three-body problem. Bull. Astron. Inst. Czechosl. 31, 312-316 (1980) · Zbl 0449.70009
[26] R. Meire, The stability of the triangular points in the elliptic restricted problem. Celest. Mech. 23, 89-95 (1981) · Zbl 0465.70012 · doi:10.1007/BF01228547
[27] A. Narayan, C.R. Kumar, Effects of photogravitational and oblateness on the triangular Lagrangian points in the elliptical restricted three body problem. Int. J. Pure Appl. Math. 68, 201-224 (2011) · Zbl 1251.70010
[28] A. Narayan, C.R. Kumar, Stability of triangular equilibrium points in elliptical restricted three body problem under the effects of photogravitational and oblateness of primaries. Int. J. Pure Appl. Math. 70, 735-754 (2011)
[29] A.H. Nayfeh, Characteristic exponents for the triangular points in the elliptic restricted problem of three bodies. AIAA J. 8, 1916-1917 (1970) · doi:10.2514/3.6026
[30] P. Oberti, A. Vienne, An upgraded theory for Helene, Telesto, and Calypso. Astron. Astrophys. 397, 353-359 (2003) · doi:10.1051/0004-6361:20021518
[31] M. Ollé, J.R. Pacha, The 3D elliptic restricted three-body problem: periodic orbits which bifurcate from limiting restricted problems. Astron. Astrophys. 351, 1149-1164 (1999)
[32] N. Pathak, V.O. Thomas, Evolution of the f family orbits in the photo gravitational Sun-Saturn system with oblateness. Int. J. Astron. Astrophys. 6, 254-271 (2016) · doi:10.4236/ijaa.2016.63021
[33] E. Perdios, Doubly asymptotic orbits at the unstable equilibrium in the elliptic restricted problem, in ed. by V.V. Markellos, Y. Kozai. Dynamical Trapping and Evolution in the Solar System. Astrophysics and Space Science Library (A Series of Books on the Recent Developments of Space Science and of General Geophysics and Astrophysics Published in Connection with the Journal Space Science Reviews), vol. 106, (Springer, Dordrecht, 1983)
[34] E.A. Perdios, V.V. Markellos, Stability and bifurcations of Sitnikov motions. Celest. Mech. 42, 187-200 (1988) · doi:10.1007/BF01232956
[35] I.A. Robin, V.V. Markellos, Numerical determination of three-dimensional periodic orbits generated from vertical self-resonant satellite orbits. Celest. Mech. 21, 395-434 (1980) · Zbl 0426.70012 · doi:10.1007/BF01231276
[36] Y.S. Ruth, R.K. Sharma, Periodic orbits in the photogravitational elliptic restricted three-body problem. Advanc. Astrophys. 3, 154-170 (2018)
[37] R.K. Sharma, P.V. Subba Rao, Collinear equilibria and their characteristic exponents in the restricted three-body problem when the primaries are oblate spheroids. Celest. Mech. 12, 189-201 (1975) · Zbl 0313.70010 · doi:10.1007/BF01230211
[38] J.F.L. Simmons, A.J.C. McDonald, J.C. Brown, The restricted 3-body problem with radiation pressure. Celes. Mech. 35, 145-187 (1985) · Zbl 0613.70005 · doi:10.1007/BF01227667
[39] J. Singh, A. Umar, Motion in the photogravitational elliptic restricted three-body problem under an oblate body. Astron. J. 143(109), 22 (2012)
[40] J. Tschauner, Die Bewegung in der Nahe der Dreieckspunkte des elliptischen eingeschrankten Dreikorperproblems. Celes. Mech. 3, 189-196 (1971) · Zbl 0217.23103 · doi:10.1007/BF01228032
[41] C. Valente, L. Marino, G. Orecchini, Stability of the motion near L_4 equilateral Lagrangian point. Acta Astronaut. 46, 501-506 (2000) · doi:10.1016/S0094-5765(00)00010-2
[42] P. Verrier, T. Waters, J. Sieber, Evolution of the L_1 halo family in the radial solar sail circular restricted three-body problem. Celest. Mech. Dyn. Astr. 120, 373-400 (2014) · Zbl 1415.70025 · doi:10.1007/s10569-014-9575-2
[43] G. Voyatzis, I. Gkolias, H. Varvoglis, The dynamics of the elliptic Hill problem: periodic orbits and stability regions. Celest. Mech. Dyn. Astr. 113, 125-139 (2012) · doi:10.1007/s10569-011-9394-7
[44] X.Y. Zeng, H.X. Baoyin, J.F. Li, Updated rotating mass dipole with oblateness of one primary (I): equilibria in the equator and their stability. Astrophys. Space Sci. 361(14), 12 (2015)
[45] E.E. Zotos, J. Nagler, On the classification of orbits in the three-dimensional Copenhagen problem with oblate primaries. Int. J. Non Linear Mech. 108, 55-71 (2019) · doi:10.1016/j.ijnonlinmec.2018.10.009
[46] E. · doi:10.1016/j.pss.2018.11.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.