×

Deep and shallow slice knots in 4-manifolds. (English) Zbl 1467.57013

Summary: We consider slice disks for knots in the boundary of a smooth compact 4-manifold \(X^4\). We call a knot \(K\subset\partial X\) deep slice in \(X\) if there is a smooth properly embedded \(2\)-disk in \(X\) with boundary \(K\), but \(K\) is not concordant to the unknot in a collar neighborhood \(\partial X\times{I}\) of the boundary.
We point out how this concept relates to various well-known conjectures and give some criteria for the nonexistence of such deep slice knots. Then we show, using the Wall self-intersection invariant and a result of Rohlin, that every 4-manifold consisting of just one 0- and a nonzero number of 2-handles always has a deep slice knot in the boundary.
We end by considering 4-manifolds where every knot in the boundary bounds an embedded disk in the interior. A generalization of the Murasugi-Tristram inequality is used to show that there does not exist a compact, oriented \(4\)-manifold \(V\) with spherical boundary such that every knot \(K\subset{S}^3=\partial V\) is slice in \(V\) via a null-homologous disk.

MSC:

57K40 General topology of 4-manifolds
57K10 Knot theory

References:

[1] Aceto, Paolo; Golla, Marco; Larson, Kyle, Embedding 3-manifolds in spin 4-manifolds, J. Topol., 10, 2, 301-323 (2017) · Zbl 1376.57026 · doi:10.1112/topo.12010
[2] Ian Agol, Comment on the blogpost “Connection between SPC4 and Schoenflies”, 2013. https://lamington.wordpress.com/2013/10/18/scharlemann-on-schoenflies/, accessed: 2020-03-31.
[3] Akbulut, Selman, Cappell-Shaneson homotopy spheres are standard, Ann. of Math. (2), 171, 3, 2171-2175 (2010) · Zbl 1216.57017 · doi:10.4007/annals.2010.171.2171
[4] Boden, Hans U.; Nagel, Matthias, Concordance group of virtual knots, Proc. Amer. Math. Soc., 145, 12, 5451-5461 (2017) · Zbl 1397.57007 · doi:10.1090/proc/13667
[5] Celoria, Daniele, On concordances in 3-manifolds, J. Topol., 11, 1, 180-200 (2018) · Zbl 1403.57009 · doi:10.1112/topo.12051
[6] Cochran, Tim D.; Harvey, Shelly; Horn, Peter, Filtering smooth concordance classes of topologically slice knots, Geom. Topol., 17, 4, 2103-2162 (2013) · Zbl 1282.57006 · doi:10.2140/gt.2013.17.2103
[7] Cochran, T. D.; Lickorish, W. B. R., Unknotting information from \(4\)-manifolds, Trans. Amer. Math. Soc., 297, 1, 125-142 (1986) · Zbl 0643.57006 · doi:10.2307/2000460
[8] Conway, Anthony; Nagel, Matthias, Stably slice disks of links, J. Topol., 13, 3, 1261-1301 (2020) · Zbl 1455.57009 · doi:10.1112/topo.12154
[9] Anthony Conway, The Levine-Tristram signature: a survey, 2019. 1903.04477.
[10] Tim D. Cochran, Kent E. Orr, and Peter Teichner, Knot concordance, Whitney towers and \(L^2\)-signatures, Ann. of Math. (2), 157(2):433-519, 2003. https://doi.org/10.4007/annals.2003.157.433, math/9908117. · Zbl 1044.57001
[11] Davis, Christopher W., Concordance, crossing changes, and knots in homology spheres, Canad. Math. Bull., 63, 4, 744-754 (2020) · Zbl 1462.57002 · doi:10.4153/s0008439519000791
[12] Davis, Christopher W.; Nagel, Matthias; Park, JungHwan; Ray, Arunima, Concordance of knots in \(S^1\times S^2\), J. Lond. Math. Soc. (2), 98, 1, 59-84 (2018) · Zbl 1497.57003 · doi:10.1112/jlms.12125
[13] Freedman, Michael; Gompf, Robert; Morrison, Scott; Walker, Kevin, Man and machine thinking about the smooth 4-dimensional Poincar\'{e} conjecture, Quantum Topol., 1, 2, 171-208 (2010) · Zbl 1236.57043 · doi:10.4171/QT/5
[14] Friedl, Stefan; Nagel, Matthias; Orson, Patrick; Powell, Mark, Satellites and concordance of knots in 3-manifolds, Trans. Amer. Math. Soc., 371, 4, 2279-2306 (2019) · Zbl 1421.57018 · doi:10.1090/tran/7313
[15] Freedman, Michael H.; Quinn, Frank, Topology of 4-manifolds, Princeton Mathematical Series 39, viii+259 pp. (1990), Princeton University Press, Princeton, NJ · Zbl 0705.57001
[16] Freedman, Michael Hartley, The topology of four-dimensional manifolds, J. Differential Geometry, 17, 3, 357-453 (1982) · Zbl 0528.57011
[17] Gilmer, Patrick M., Configurations of surfaces in \(4\)-manifolds, Trans. Amer. Math. Soc., 264, 2, 353-380 (1981) · Zbl 0509.57023 · doi:10.2307/1998544
[18] Jennifer Hom, Adam Simon Levine, and Tye Lidman, Knot concordance in homology cobordisms, 2018. 1801.07770. · Zbl 1383.57018
[19] Kamada, Seiichi, Surface-knots in 4-space, Springer Monographs in Mathematics, xi+212 pp. (2017), Springer, Singapore · Zbl 1362.57001 · doi:10.1007/978-981-10-4091-7
[20] Problems in low-dimensional topology. Geometric topology, Athens, GA, 1993, AMS/IP Stud. Adv. Math. 2, 35-473 (1997), Amer. Math. Soc., Providence, RI · Zbl 0888.57014
[21] Kronheimer, P. B.; Mrowka, T. S., Gauge theory and Rasmussen’s invariant, J. Topol., 6, 3, 659-674 (2013) · Zbl 1298.57025 · doi:10.1112/jtopol/jtt008
[22] Kawauchi, Akio; Shibuya, Tetsuo; Suzuki, Shin’ichi, Descriptions on surfaces in four-space. I. Normal forms, Math. Sem. Notes Kobe Univ., 10, 1, 75-125 (1982) · Zbl 0506.57014
[23] Levine, J., Invariants of knot cobordism, Invent. Math., 8, 98-110; addendum, ibid. 8 (1969), 355 (1969) · Zbl 0179.52401 · doi:10.1007/BF01404613
[24] Lickorish, W. B. Raymond, An introduction to knot theory, Graduate Texts in Mathematics 175, x+201 pp. (1997), Springer-Verlag, New York · Zbl 0886.57001 · doi:10.1007/978-1-4612-0691-0
[25] Milnor, John, Lectures on the \(h\)-cobordism theorem, v+116 pp. (1965), Princeton University Press, Princeton, N.J. · Zbl 0161.20302
[26] Nagel, Matthias; Orson, Patrick; Park, JungHwan; Powell, Mark, Smooth and topological almost concordance, Int. Math. Res. Not. IMRN, 23, 7324-7355 (2019) · Zbl 1479.57016 · doi:10.1093/imrn/rnx338
[27] Norman, R. A., Dehn’s lemma for certain \(4\)-manifolds, Invent. Math., 7, 143-147 (1969) · Zbl 0181.51602 · doi:10.1007/BF01389797
[28] Grisha Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, 2003. math/0307245. · Zbl 1130.53003
[29] Rohlin, V. A., Two-dimensional submanifolds of four-dimensional manifolds, Funkcional. Anal. i Prilo\v{z}en., 5, 1, 48-60 (1971) · Zbl 0268.57019
[30] Schneiderman, Rob, Algebraic linking numbers of knots in 3-manifolds, Algebr. Geom. Topol., 3, 921-968 (2003) · Zbl 1039.57005 · doi:10.2140/agt.2003.3.921
[31] Suzuki, Shin’ichi, Local knots of \(2\)-spheres in \(4\)-manifolds, Proc. Japan Acad., 45, 34-38 (1969) · Zbl 0176.53601
[32] Tristram, A. G., Some cobordism invariants for links, Proc. Cambridge Philos. Soc., 66, 251-264 (1969) · Zbl 0191.54703 · doi:10.1017/s0305004100044947
[33] Wall, C. T. C., Surgery on compact manifolds, Mathematical Surveys and Monographs 69, xvi+302 pp. (1999), American Mathematical Society, Providence, RI · Zbl 0935.57003 · doi:10.1090/surv/069
[34] Yasuhara, Akira, \((2,15)\)-torus knot is not slice in \({\mathbf{C}}{\text{P}}^2\), Proc. Japan Acad. Ser. A Math. Sci., 67, 10, 353-355 (1991) · Zbl 0805.57003
[35] Yasuhara, Akira, On slice knots in the complex projective plane, Rev. Mat. Univ. Complut. Madrid, 5, 2-3, 255-276 (1992) · Zbl 0780.57015
[36] Yasuhara, Akira, Connecting lemmas and representing homology classes of simply connected \(4\)-manifolds, Tokyo J. Math., 19, 1, 245-261 (1996) · Zbl 0865.57034 · doi:10.3836/tjm/1270043232
[37] Yildiz, Eylem Zeliha, A note on knot concordance, Algebr. Geom. Topol., 18, 5, 3119-3128 (2018) · Zbl 1398.57027 · doi:10.2140/agt.2018.18.3119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.