×

Satellites of infinite rank in the smooth concordance group. (English) Zbl 1473.57013

This article offers several conjectures on how satellite operations on knots interact with the concordance group.
Two knots \(K_1\), \(K_2\) are said to be (smoothly) concordant if they cobound an (smoothly) embedded cyclinder in \(S^3\times[0,1]\). The equivalence classes of knots under concordance form a group \(\mathcal{C}\) under the connected sum operation. For any knot \(P\) in the solid torus \(S^1\times D^2\) there is a satellite operation which induces a map \(P:\mathcal{C}\to\mathcal{C}\), which usually is not a group homomorphism.
The central conjecture of the article is that if \(P:\mathcal{C}\to\mathcal{C}\) is not constant, then the image of \(P:\mathcal{C}\to\mathcal{C}\) generates a subgroup of infinite rank in \(C\). The conjecture is proved for the case where \(P\) has a non-zero winding number.
The main result of the article is a condition that is sufficient for the conjecture to hold for a given knot \(P\) with winding number zero. This criterion is based on rational linking numbers of lifts of \(\partial D^2\) to a double branched cover. The result is established using techniques from \(SO(3)\) gauge theory, such as instanton cobordism obstructions derived from instanton moduli spaces and Chern-Simons invariants. Some examples are included, which highlight how the criterion can be tested in practice.

MSC:

57K10 Knot theory

Software:

khoca

References:

[1] Akbulut, S.; Kirby, R., Branched covers of surfaces in 4-manifolds, Math. Ann., 252, 2, 111-131 (1980) · Zbl 0421.57002
[2] Cochran, TD; Davis, CW; Ray, A., Injectivity of satellite operators in knot concordance, J. Topol., 7, 4, 948-964 (2014) · Zbl 1312.57006
[3] Cochran, TD; Gompf, R., Applications of Donaldson’s theorems to classical knot concordance, homology 3-spheres and Property P, Topology, 27, 4, 495-512 (1988) · Zbl 0669.57003
[4] Chen, W.: Some inequalities for Heegaard Floer concordance invariants of satellite knots. Thesis (Ph.D.)-Michigan State University, ProQuest LLC, Ann Arbor (2019)
[5] Cochran, TD; Harvey, S.; Horn, P., Filtering smooth concordance classes of topologically slice knots, Geom. Topol., 17, 4, 2103-2162 (2013) · Zbl 1282.57006
[6] Cochran, TD; Harvey, S.; Leidy, C., 2-torsion in the \(n\)-solvable filtration of the knot concordance group, Proc. Lond. Math. Soc. (3), 102, 2, 257-290 (2011) · Zbl 1211.57005
[7] Cochran, TD; Harvey, S.; Leidy, C., Primary decomposition and the fractal nature of knot concordance, Math. Ann., 351, 2, 443-508 (2011) · Zbl 1234.57004
[8] Cochran, TD; Harvey, S.; Powell, M., Grope metrics on the knot concordance set, J. Topol., 10, 3, 669-699 (2017) · Zbl 1421.57006
[9] Choon Cha, J.; Ko, KH, Signatures of links in rational homology spheres, Topology, 41, 6, 1161-1182 (2002) · Zbl 1031.57020
[10] Cochran, TD; Orr, KE, Not all links are concordant to boundary links, Ann. Math. (2), 138, 3, 519-554 (1993) · Zbl 0828.57015
[11] Cochran, TD; Orr, KE; Teichner, P., Knot concordance, Whitney towers and \(L^2\)-signatures, Ann. Math. (2), 157, 2, 433-519 (2003) · Zbl 1044.57001
[12] Cochran, TD; Teichner, P., Knot concordance and von Neumann \(\rho \)-invariants, Duke Math. J., 137, 2, 337-379 (2007) · Zbl 1186.57006
[13] Donaldson, S.K.: Floer Homology Groups in Yang-Mills Theory, Volume 147 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2002). With the assistance of M. Furuta and D. Kotschick · Zbl 0998.53057
[14] Davis, CW; Ray, A., Satellite operators as group actions on knot concordance, Algebr. Geom. Topol., 16, 2, 945-969 (2016) · Zbl 1351.57007
[15] Floer, A., An instanton-invariant for 3-manifolds, Commun. Math. Phys., 118, 2, 215-240 (1988) · Zbl 0684.53027
[16] Freedman, MH; Quinn, F., Topology of 4-Manifolds (1990), Princeton: Princeton University Press, Princeton · Zbl 0705.57001
[17] Fintushel, R.; Stern, RJ, Pseudofree orbifolds, Ann. Math., 122, 2, 335-364 (1985) · Zbl 0602.57013
[18] Fintushel, R.; Stern, RJ, Instanton homology of Seifert fibred homology three spheres, Proc. Lond. Math. Soc., 3, 1, 109-137 (1990) · Zbl 0705.57009
[19] Furuta, M., Homology cobordism group of homology 3-spheres, Invent. Math., 100, 1, 339-355 (1990) · Zbl 0716.55008
[20] Gordon, C.M.A.: Some aspects of classical knot theory. In: Knot Theory (Proc. Sem., Plans-sur-Bex, 1977), Volume 685 of Lecture Notes in Math., pp. 1-60. Springer, Berlin (1978) · Zbl 0386.57002
[21] Gordon, CMA, Dehn surgery and satellite knots, Trans. Am. Math. Soc., 275, 2, 687-708 (1983) · Zbl 0519.57005
[22] Gordon, C.: Dehn surgery and 3-manifolds. In: Low Dimensional Topology, Volume 15 of IAS/Park City Math. Ser., pp. 21-71. Amer. Math. Soc., Providence (2009) · Zbl 1194.57003
[23] Grigsby, JE; Ruberman, D.; Strle, S., Knot concordance and Heegaard Floer homology invariants in branched covers, Geom. Topol., 12, 4, 2249-2275 (2008) · Zbl 1149.57007
[24] Hedden, M., Kirk, P.: Chern-Simons invariants, \({\rm SO}(3)\) instantons, and \({\mathbb{Z}}/2\) homology cobordism. In: Chern-Simons Gauge Theory: 20 Years After, vol. 50 of AMS/IP Stud. Adv. Math., pp. 83-114. Amer. Math. Soc., Providence (2011) · Zbl 1256.57023
[25] Hedden, M.; Kirk, P., Instantons, concordance, and Whitehead doubling, J. Differ. Geom., 91, 2, 281-319 (2012) · Zbl 1256.57006
[26] Hedden, M.; Kim, S-G; Livingston, C., Topologically slice knots of smooth concordance order two, J. Differ. Geom., 102, 3, 353-393 (2016) · Zbl 1339.57011
[27] Hedden, M.; Livingston, C.; Ruberman, D., Topologically slice knots with nontrivial Alexander polynomial, Adv. Math., 231, 2, 913-939 (2012) · Zbl 1254.57008
[28] Hom, J., An infinite-rank summand of topologically slice knots, Geom. Topol., 19, 2, 1063-1110 (2015) · Zbl 1315.57029
[29] Hom, J., A survey on Heegaard Floer homology and concordance, J. Knot Theory Ramifications, 26, 2, 1740015 (2017) · Zbl 1360.57002
[30] Jabuka, S., Concordance invariants from higher order covers, Topol. Appl., 159, 10-11, 2694-2710 (2012) · Zbl 1250.57011
[31] Levine, AS, Nonsurjective satellite operators and piecewise-linear concordance, Forum Math. Sigma, 4, e34 (2016) · Zbl 1369.57015
[32] Litherland, R.A.: Signatures of iterated torus knots. In: Topology of Low-dimensional Manifolds, pp. 71-84. Springer, Berlin (1979) · Zbl 0412.57002
[33] Litherland, R.A.: Cobordism of satellite knots. In: Four-manifold Theory (Durham, N.H., 1982), Volume 35 of Contemp. Math., pp. 327-362. Amer. Math. Soc., Providence (1984) · Zbl 0563.57001
[34] Livingston, C., Knots which are not concordant to their reverses, Quart. J. Math. Oxford Ser. (2), 34, 135, 323-328 (1983) · Zbl 0537.57003
[35] Livingston, C., Links not concordant to boundary links, Proc. Am. Math. Soc., 110, 4, 1129-1131 (1990) · Zbl 0726.57007
[36] Livingston, C., Infinite order amphicheiral knots, Algebr. Geom. Topol., 1, 231-241 (2001) · Zbl 0997.57006
[37] Livingston, C., The concordance genus of knots, Algebr. Geom. Topol., 4, 1-22 (2004) · Zbl 1055.57007
[38] Livingston, C., Notes on the knot concordance invariant upsilon, Algebr. Geom. Topol., 17, 1, 111-130 (2017) · Zbl 1357.57018
[39] Lewark, L.; Lobb, A., New quantum obstructions to sliceness, Proc. Lond. Math. Soc. (3), 112, 1, 81-114 (2016) · Zbl 1419.57017
[40] Livingston, C., Melvin, P.: Abelian invariants of satellite knots. In: Geometry and Topology (College Park, Md., 1983/84), Volume 1167 of Lecture Notes in Math., pp. 217-227. Springer, Berlin (1985) · Zbl 0605.57001
[41] Lobb, A., A slice genus lower bound from \({\rm sl}(n)\) Khovanov-Rozansky homology, Adv. Math., 222, 4, 1220-1276 (2009) · Zbl 1200.57011
[42] Morgan, J.W., Mrowka, T., Ruberman, D.: The \(L^2\)-moduli space and a vanishing theorem for Donaldson polynomial invariants. In: Monographs in Geometry and Topology, II. International Press, Cambridge (1994) · Zbl 0830.58005
[43] Manolescu, C.; Owens, B., A concordance invariant from the Floer homology of double branched covers, Int. Math. Res. Not. IMRN, 2007, 20, 21 (2007) · Zbl 1132.57013
[44] Neumann, W.D., Zagier, D.: A note on an invariant of Fintushel and Stern. In: Geometry and Topology (College Park, Md., 1983/84), Volume 1167 of Lecture Notes in Math., pp. 241-244. Springer, Berlin (1985) · Zbl 0589.57016
[45] Ozsváth, PS; Stipsicz, AI; Szabó, Z., Concordance homomorphisms from knot Floer homology, Adv. Math., 315, 366-426 (2017) · Zbl 1383.57020
[46] Park, K., On independence of iterated Whitehead doubles in the knot concordance group, J. Knot Theory Ramificat., 27, 1, 1850003 (2018) · Zbl 1395.53093
[47] Pinzón-Caicedo, J., Independence of satellites of torus knots in the smooth concordance group, Geom. Topol., 21, 6, 3191-3211 (2017) · Zbl 1373.57024
[48] Rasmussen, J., Khovanov homology and the slice genus, Invent. Math., 182, 2, 419-447 (2010) · Zbl 1211.57009
[49] Rolfsen, D.: Knots and Links, Volume 7 of Mathematics Lecture Series. Publish or Perish, Inc., Houston (1990). Corrected reprint of the 1976 original · Zbl 0854.57002
[50] Seifert, H., On the homology invariants of knots, Quart. J. Math. Oxf. Ser. (2), 1, 23-32 (1950) · Zbl 0035.11103
[51] Seifert, H., Threlfall, W.: Seifert and Threlfall: a textbook of topology. Pure and Applied Mathematics, vol. 89. Academic Press Inc., New York (1980) · Zbl 0469.55001
[52] Taubes, CH, Gauge theory on asymptotically periodic 4-manifolds, J. Differ. Geom., 25, 3, 363-430 (1987) · Zbl 0615.57009
[53] Taubes, C.H.: \(L^2\) moduli spaces on 4-manifolds with cylindrical ends. In: Monographs in Geometry and Topology, I. International Press, Cambridge (1993) · Zbl 0830.58004
[54] Uhlenbeck, KK, Connections with \(L^p\) bounds on curvature, Commun. Math. Phys., 83, 1, 31-42 (1982) · Zbl 0499.58019
[55] Wang, S., The genus filtration in the smooth concordance group, Pac. J. Math., 285, 2, 501-510 (2016) · Zbl 1357.57053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.