×

Knot concordance in homology cobordisms. (English) Zbl 1510.57006

Two integer homology spheres, \(Y_0, Y_1\) are said to be homology cobordant if there exists an oriented 4-manifold \(W\) such that \(\partial W = -Y_0 \sqcup Y_1\), and the inclusions \(Y_i \rightarrow W\) induce isomorphisms in homology. Two knots \(K_0 \subset Y_0\), \(K_1 \subset Y_1\) are homology concordant if there exists a homology cobordism \(W\) between \(Y_0\) and \(Y_1\), and a smoothly embedded annulus \(A \subset W\) such that \(\partial A = -K_0 \sqcup K_1\), generalizing the concept of concordance between two knots in \(S^3\).
This paper addresses a structural question for the group of homology concordances for knots in homology spheres (the group operation here is the connected sum of the manifolds and the knots). In particular, if \(\mathscr{C}_{\mathbb{Z}}\) denotes the group of knots in \(S^3\), modulo homology concordance, and if \(\widehat{\mathscr{C}}_{\mathbb{Z}}\) denotes the group of knots \(K \subset Y\) where \(Y\) is a homology 3-sphere that bounds a homology 4-ball, modulo homology concordance, then the main theorem (Theorem 1.1) of the paper states that the subgroup \(\mathscr{C}_{\mathbb{Z}} \subset \widehat{\mathscr{C}}_{\mathbb{Z}}\) is of infinite index, precisely, \(\widehat{\mathscr{C}}_{\mathbb{Z}} / \mathscr{C}_{\mathbb{Z}}\) is infinitely generated, and contains a subgroup isomorphic to \(\mathbb{Z}\).
The authors provide an infinite family of knots contained in homology spheres \((K_j, Y_j) \in \widehat{\mathscr{C}}_{\mathbb{Z}}\) for which a Heegaard Floer theoretic invariant \(\theta(Y_j,K_j)\) is unbounded, which proves the infinite generation result. They provide a knot \((Y,K)\) such that \(Y\) is a homology sphere bounding a homology 4-ball, such that \(K\) is not homology concordant to any knot in \(S^3\), and such that the same holds for \((\#_n(Y,K))\), which provides them with the \(\mathbb{Z}\) summand in the quotient as mentioned above.
The crux of the arguments lies in finding obstructions leveraging several Heegaard Floer theoretic concordance invariants for knots in \(S^3\), which satisfy similar properties and relations among them under homology concordance as concordance of knots in \(S^3\).
The Heegaard Floer homology toolbox comes with various invariants which the authors make use of in this paper, such as a homology concordance invariant for closed, orientable 3-manifolds, the \(d\)-invariant, and several knot concordance invariants such as \(\tau, \varepsilon, \Upsilon\). Section 4 of the paper is devoted to showing that these are indeed homology concordance invariants and to proving their various properties. The authors then make use of a filtered version of the Heegaard Floer mapping cone formula, which lets one find the knot Floer homology of the core of the surgery in the closed 3-manifold, obtained by doing a surgery on a knot in \(S^3\), using the knot Floer chain complex associated with the knot. In Sections 2, 3 and 6, they make use of the non-filtered and the filtered versions of the mapping cone formulas to get the desired results.

MSC:

57K10 Knot theory
57K18 Homology theories in knot theory (Khovanov, Heegaard-Floer, etc.)
57R58 Floer homology

References:

[1] S. AKBULUT, A solution to a conjecture of Zeeman, Topology 30 (1991), no. 3, 513-515. · Zbl 0729.57009 · doi:10.1016/0040-9383(91)90028-3
[2] S. AKBULUT and Ç. KARAKURT, Heegaard Floer homology of some Mazur type manifolds, Proc. Amer. Math. Soc. 142 (2014), no. 11, 4001-4013. · Zbl 1305.57049 · doi:10.1090/S0002-9939-2014-12149-6
[3] S. AKBULUT and R. KIRBY, Branched covers of surfaces in 4-manifolds, Math. Ann. 252 (1979/80), no. 2, 111-131. · Zbl 0421.57002 · doi:10.1007/BF01420118
[4] D. CELORIA, On concordances in 3-manifolds, J. Topol. 11 (2018), no. 1, 180-200. · Zbl 1403.57009 · doi:10.1112/topo.12051
[5] A. DAEMI, Chern-Simons functional and the homology cobordism group, Duke Math. J. 169 (2020), no. 15, 2827-2886. · Zbl 1480.57036 · doi:10.1215/00127094-2020-0017
[6] C. W. DAVIS, Concordance, crossing changes, and knots in homology spheres, Canad. Math. Bull. 63 (2020), no. 4, 744-754. · Zbl 1462.57002 · doi:10.4153/s0008439519000791
[7] C. W. DAVIS and A. RAY, Satellite operators as group actions on knot concordance, Algebr. Geom. Topol. 16 (2016), no. 2, 945-969. · Zbl 1351.57007 · doi:10.2140/agt.2016.16.945
[8] E. EFTEKHARY, Bordered Floer homology and existence of incompressible tori in homology spheres, Compos. Math. 154 (2018), no. 6, 1222-1268. · Zbl 1436.57017 · doi:10.1112/s0010437x18007054
[9] H. C. FICKLE, Knots, Z-homology 3-spheres and contractible 4-manifolds, Houston J. Math. 10 (1984), no. 4, 467-493. · Zbl 0559.57007
[10] R. E. GOMPF and A. I. STIPSICZ, 4-manifolds and Kirby Calculus, Grad. Stud. Math. 20, Amer. Math. Soc., Providence, 1999. · Zbl 0933.57020 · doi:10.1090/gsm/020
[11] A. HAEFLIGER, Lissage des immersions, I, Topology 6 (1967), 221-239. · Zbl 0148.43406 · doi:10.1016/0040-9383(67)90036-5
[12] A. HAEFLIGER, Lissage des immersions, II, preprint, 1967. · Zbl 0148.43406
[13] A. HAEFLIGER and V. POENARU, La classification des immersions combinatoires, Publ. Math. Inst. Hautes Études Sci. 23 (1964), 75-91.
[14] M. HEDDEN, On knot Floer homology and cabling, Ph.D. dissertation, Columbia University, New York, 2005. · Zbl 1086.57014
[15] M. HEDDEN and A. S. LEVINE, A surgery formula for knot Floer homology, to appear in Quantum Topol., preprint, arXiv1901.02488v2 [math.GT].
[16] J. HOM, Bordered Heegaard Floer homology and the tau-invariant of cable knots, J. Topol. 7 (2014), no. 2, 287-326. · Zbl 1368.57002 · doi:10.1112/jtopol/jtt030
[17] J. HOM, The knot Floer complex and the smooth concordance group, Comment. Math. Helv. 89 (2014), no. 3, 537-570. · Zbl 1312.57008 · doi:10.4171/CMH/326
[18] J. HOM, A note on the concordance invariants epsilon and upsilon, Proc. Amer. Math. Soc. 144 (2016), no. 2, 897-902. · Zbl 1337.57020 · doi:10.1090/proc/12706
[19] J. HOM, A survey on Heegaard Floer homology and concordance, J. Knot Theory Ramifications 26 (2017), no. 2, art. ID 1740015. · Zbl 1360.57002 · doi:10.1142/S0218216517400156
[20] J. HOM and Z. WU, Four-ball genus bounds and a refinement of the Ozsváth-Szabó tau invariant, J. Symplectic Geom. 14 (2016), no. 1, 305-323. · Zbl 1348.57023 · doi:10.4310/JSG.2016.v14.n1.a12
[21] R. KIRBY, “Problems in low-dimensional topology” in Geometric Topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc., Providence, 1997, 35-473. · Zbl 0888.57014
[22] A. S. LEVINE, Nonsurjective satellite operators and piecewise-linear concordance, Forum Math. Sigma 4 (2016), no. e34. · Zbl 1369.57015 · doi:10.1017/fms.2016.31
[23] A. S. LEVINE and T. LIDMAN, Simply connected, spineless 4-manifolds, Forum Math. Sigma 7 (2019), no. e14. · Zbl 1421.57034 · doi:10.1017/fms.2019.11
[24] R. LIPSHITZ, P. S. OZSVÁTH, and D. P. THURSTON, Bordered Heegaard Floer homology, Mem. Amer. Math. Soc. 254 (2018), no. 1216. · Zbl 1422.57080 · doi:10.1090/memo/1216
[25] C. LIVINGSTON, Notes on the knot concordance invariant upsilon, Algebr. Geom. Topol. 17 (2017), no. 1, 111-130. · Zbl 1357.57018 · doi:10.2140/agt.2017.17.111
[26] Y. MATSUMOTO, \(A 4\)-manifold which admits no spine, Bull. Amer. Math. Soc. (N.S.) 81 (1975), no. 2, 467-470. · Zbl 0305.57012 · doi:10.1090/S0002-9904-1975-13787-6
[27] J. R. MUNKRES, Elementary Differential Topology, Ann. of Math. Stud. 54, Princeton Univ. Press, Princeton, 1963. · Zbl 0107.17201
[28] W. D. NEUMANN and F. RAYMOND, “Seifert manifolds, plumbing, μ-invariant and orientation reversing maps” in Algebraic and Geometric Topology (Santa Barbara, 1977), Lecture Notes in Math. 664, Springer, Berlin, 1978, 163-196. · Zbl 0401.57018
[29] Y. NI and Z. WU, Cosmetic surgeries on knots in \[{S^3} \], J. Reine Angew. Math. 706 (2015), 1-17. · Zbl 1328.57010 · doi:10.1515/crelle-2013-0067
[30] P. S. OZSVÁTH and Z. SZABÓ, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179-261. · Zbl 1025.57016 · doi:10.1016/S0001-8708(02)00030-0
[31] P. S. OZSVÁTH and Z. SZABÓ, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003), no. 2, 615-639. · Zbl 1037.57027 · doi:10.2140/gt.2003.7.615
[32] P. S. OZSVÁTH and Z. SZABÓ, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003), 185-224. · Zbl 1130.57302 · doi:10.2140/gt.2003.7.185
[33] P. S. OZSVÁTH and Z. SZABÓ, Holomorphic disks and knot invariants, Adv. Math. 186 (2004), no. 1, 58-116. · Zbl 1062.57019 · doi:10.1016/j.aim.2003.05.001
[34] P. S. OZSVÁTH and Z. SZABÓ, Holomorphic disks and three-manifold invariants: Properties and applications, Ann. of Math. (2) 159 (2004), no. 3, 1159-1245. · Zbl 1081.57013 · doi:10.4007/annals.2004.159.1159
[35] P. S. OZSVÁTH and Z. SZABÓ, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027-1158. · Zbl 1073.57009 · doi:10.4007/annals.2004.159.1027
[36] P. S. OZSVÁTH and Z. SZABÓ, Knot Floer homology and integer surgeries, Algebr. Geom. Topol. 8 (2008), no. 1, 101-153. · Zbl 1181.57018 · doi:10.2140/agt.2008.8.101
[37] P. S. OZSVÁTH and Z. SZABÓ, Knot Floer homology and rational surgeries, Algebr. Geom. Topol. 11 (2011), no. 1, 1-68. · Zbl 1226.57044 · doi:10.2140/agt.2011.11.1
[38] P. S. OZSVÁTH, A. I. STIPSICZ, and Z. SZABÓ, Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017), 366-426. · Zbl 1383.57020 · doi:10.1016/j.aim.2017.05.017
[39] I. PETKOVA, Cables of thin knots and bordered Heegaard Floer homology, Quantum Topol. 4 (2013), no. 4, 377-409. · Zbl 1284.57014 · doi:10.4171/QT/43
[40] O. PLAMENEVSKAYA, Bounds for the Thurston-Bennequin number from Floer homology, Algebr. Geom. Topol. 4 (2004), no. 1, 399-406. · Zbl 1070.57014 · doi:10.2140/agt.2004.4.399
[41] K. RAOUX, τ-invariants for knots in rational homology spheres, Algebr. Geom. Topol. 20 (2020), no. 4, 1601-1640. · Zbl 1448.57016 · doi:10.2140/agt.2020.20.1601
[42] J. A. RASMUSSEN, Floer homology and knot complements, Ph.D. dissertation, Harvard University, Cambridge, MA, 2003.
[43] A. RAY, Satellite operators with distinct iterates in smooth concordance, Proc. Amer. Math. Soc. 143 (2015), no. 11, 5005-5020. · Zbl 1339.57014 · doi:10.1090/proc/12625
[44] N. SAVELIEV, Invariants for Homology 3-Spheres, Encycl. Math. Sci. 140, Springer, Berlin, 2002. · Zbl 0998.57001 · doi:10.1007/978-3-662-04705-7
[45] L. TRUONG, Truncated Heegaard Floer homology and knot concordance invariants, Algebr. Geom. Topol. 19 (2019), no. 4, 1881-1901. · Zbl 1437.57013 · doi:10.2140/agt.2019.19.1881
[46] C. T. C. WALL, \[ Locally flat \text{PL} \]submanifolds with codimension two, Proc. Cambridge Philos. Soc. 63 (1967), no. 1, 5-8. · Zbl 0166.19803 · doi:10.1017/s0305004100040834
[47] E. C. ZEEMAN, On the dunce hat, Topology 2 (1964), no. 4, 341-358. · Zbl 0116.40801 · doi:10.1016/0040-9383(63)90014-4
[48] I. ZEMKE, Link cobordisms and functoriality in link Floer homology, J. Topol. 12 (2019), no. 1, 94-220. · Zbl 1455.57020 · doi:10.1112/topo.12085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.