×

Heegaard Floer homology and concordance bounds on the Thurston norm. (English) Zbl 1457.57004

The Thurston norm \(x\colon H_2(Y,\partial Y;\mathbb{R})\to \mathbb{R}\) [W. P. Thurston, Mem. Am. Math. Soc. 339, 99–130 (1986; Zbl 0585.57006)] is a measure of complexity for \(3\)-manifolds \(Y\) with boundary. Connections between the Thurston norm and Heegaard-Floer homology have been known for some time. Notably, for a link \(L\subset S^3\) it is known that the link Floer homology determines the Thurston norm of the link complement [P. Ozsváth and Z. Szabó, J. Am. Math. Soc. 21, No. 3, 671–709 (2008; Zbl 1235.53090)]. In this article, the authors investigate a further connection, this time considering a certain type of concordance class of links in \(S^3\), and using the twisted Heegaard-Floer correction terms defined by the second author together with S. Behrens [Quantum Topol. 9, No. 1, 1–37 (2018; Zbl 1388.57026)].
Fix a 2-component link \(L=L_0\cup L_1\subset S^3\) with vanishing linking number, then perform 0-surgery on \(L_0\) and 1-surgery on \(L_1\) to obtain a closed \(3\)-manifold \(Y\). Let \(L'=L_0'\cup L_1'\) be concordant to \(L\) and write \([\Sigma]\in H_2(S^3,L;\mathbb{Z})\) for the class that is Poincaré-Lefschetz dual to the meridian of \(L_0'\) (the component concordant to \(L_0\)). The main result of the paper is the inequality \[ \left\lceil \frac{x([\Sigma])+1}{4}\right\rceil\geq \frac{\underline{d}(Y)+\underline{d}(-Y)+1}{2}. \] Here \(\underline{d}\) denotes the fully twisted Heegaard-Floer correction term of Behrens-Golla. (Recall that the original Heegaard-Floer correction terms were defined for rational homology \(3\)-spheres and the twisted versions are a generalisation that in particular are defined for more general \(3\)-manifolds.)
In practice, the authors apply the inequality among links where the \(0\)-surgery component is the unknot. Performing \(0\)-surgery on the unknot component yields \(S^1\times S^2\) and the second component determines a nullhomologous knot in \(S^1\times S^2\) (nullhomologous due to the linking number 0 assumption). In this case the left-hand side of the inequality can be interpreted as one quarter of the geometric winding number of the nullhomologous knot; that is the minimal number of geometric intersections between the knot and the \(2\)-sphere \(\{\text{pt}\}\times S^2\), within the isotopy class of that knot. Thus the inequality leads to a lower bound for the geometric winding number of the concordance class of a nullhomologous knot in \(S^1\times S^2\).
This bound is used to provide examples in \(S^1\times S^2\) of the following: knots with vanishing Schneiderman invariant (see [R. Schneiderman, Algebr. Geom. Topol. 3, 921–968 (2003; Zbl 1039.57005)]) but nonvanishing geometric winding number; knots that are not smoothly concordant to local knots; topologically but not smoothly slice knots in \(S^1\times D^3\); and knots with arbitrarily high geometric winding number. Although some of these example types have been previously obtained by other authors, these serve as a good showcase of the effectiveness of the authors’ method.

MSC:

57K10 Knot theory
57K18 Homology theories in knot theory (Khovanov, Heegaard-Floer, etc.)

References:

[1] Behrens, Stefan; Golla, Marco, Heegaard Floer correction terms, with a twist, Quantum Topol., 9, 1, 1-37 (2018) · Zbl 1388.57026 · doi:10.4171/QT/102
[2] Bodn\'{a}r, J\'{o}zsef; N\'{e}methi, Andr\'{a}s, Lattice cohomology and rational cuspidal curves, Math. Res. Lett., 23, 2, 339-375 (2016) · Zbl 1353.32028 · doi:10.4310/MRL.2016.v23.n2.a3
[3] Borodzik, Maciej; Hedden, Matthew, The \(\Upsilon\) function of \(L\)-space knots is a Legendre transform, Math. Proc. Cambridge Philos. Soc., 164, 3, 401-411 (2018) · Zbl 1411.57022 · doi:10.1017/S030500411700024X
[4] Borodzik, Maciej; Livingston, Charles, Heegaard Floer homology and rational cuspidal curves, Forum Math. Sigma, 2, e28, 23 pp. (2014) · Zbl 1325.14047 · doi:10.1017/fms.2014.28
[5] Celoria, Daniele, On concordances in 3-manifolds, J. Topol., 11, 1, 180-200 (2018) · Zbl 1403.57009 · doi:10.1112/topo.12051
[6] Cimasoni, David, Slicing Bing doubles, Algebr. Geom. Topol., 6, 2395-2415 (2006) · Zbl 1129.57007 · doi:10.2140/agt.2006.6.2395
[7] Davis, Christopher W.; Nagel, Matthias; Park, JungHwan; Ray, Arunima, Concordance of knots in \(S^1\times S^2\), J. Lond. Math. Soc. (2), 98, 1, 59-84 (2018) · Zbl 1497.57003 · doi:10.1112/jlms.12125
[8] Donald, Andrew; Owens, Brendan, Concordance groups of links, Algebr. Geom. Topol., 12, 4, 2069-2093 (2012) · Zbl 1266.57005 · doi:10.2140/agt.2012.12.2069
[9] Freedman, Michael H., A new technique for the link slice problem, Invent. Math., 80, 3, 453-465 (1985) · Zbl 0569.57002 · doi:10.1007/BF01388725
[10] Friedl, Stefan; Nagel, Matthias; Orson, Patrick; Powell, Mark, Satellites and concordance of knots in 3-manifolds, Trans. Amer. Math. Soc., 371, 4, 2279-2306 (2019) · Zbl 1421.57018 · doi:10.1090/tran/7313
[11] Gabai, David, Foliations and the topology of \(3\)-manifolds. II, J. Differential Geom., 26, 3, 461-478 (1987) · Zbl 0627.57012
[12] heddenkuzbary Matthew Hedden and Miriam Kuzbary, in preparation.
[13] Hosokawa, Fujitsugu, A concept of cobordism between links, Ann. of Math. (2), 86, 362-373 (1967) · Zbl 0152.40903 · doi:10.2307/1970693
[14] Kirby, Rob, Problems in low dimensional manifold theory. Algebraic and geometric topology, Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976, Proc. Sympos. Pure Math., XXXII, 273-312 (1978), Amer. Math. Soc., Providence, R.I. · Zbl 0394.57002
[15] Levine, Adam Simon; Ruberman, Daniel, Heegaard Floer invariants in codimension one, Trans. Amer. Math. Soc., 371, 5, 3049-3081 (2019) · Zbl 1415.57022 · doi:10.1090/tran/7345
[16] Levine, Adam Simon; Ruberman, Daniel; Strle, Sa\v{s}o, Nonorientable surfaces in homology cobordisms, Geom. Topol., 19, 1, 439-494 (2015) · Zbl 1311.57019 · doi:10.2140/gt.2015.19.439
[17] Livingston, Charles, Mazur manifolds and wrapping number of knots in \(S^1\times S^2\), Houston J. Math., 11, 4, 523-533 (1985) · Zbl 0604.57010
[18] Neumann, Walter D., A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc., 268, 2, 299-344 (1981) · Zbl 0546.57002 · doi:10.2307/1999331
[19] Ni, Yi; Wu, Zhongtao, Correction terms, \( \mathbb{Z}_2\)-Thurston norm, and triangulations, Topology Appl., 194, 409-426 (2015) · Zbl 1415.57008 · doi:10.1016/j.topol.2015.09.002
[20] Ni, Yi; Wu, Zhongtao, Cosmetic surgeries on knots in \(S^3\), J. Reine Angew. Math., 706, 1-17 (2015) · Zbl 1328.57010 · doi:10.1515/crelle-2013-0067
[21] Ozsv\'{a}th, Peter; Szab\'{o}, Zolt\'{a}n, Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol., 8, 2, 615-692 (2008) · Zbl 1144.57011 · doi:10.2140/agt.2008.8.615
[22] Ozsv\'{a}th, Peter S.; Szab\'{o}, Zolt\'{a}n, Knot Floer homology and integer surgeries, Algebr. Geom. Topol., 8, 1, 101-153 (2008) · Zbl 1181.57018 · doi:10.2140/agt.2008.8.101
[23] Ozsv\'{a}th, Peter; Szab\'{o}, Zolt\'{a}n, Link Floer homology and the Thurston norm, J. Amer. Math. Soc., 21, 3, 671-709 (2008) · Zbl 1235.53090 · doi:10.1090/S0894-0347-08-00586-9
[24] Ozsv\'{a}th, Peter; Szab\'{o}, Zolt\'{a}n, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math., 173, 2, 179-261 (2003) · Zbl 1025.57016 · doi:10.1016/S0001-8708(02)00030-0
[25] Ozsv\'{a}th, Peter; Szab\'{o}, Zolt\'{a}n, On the Floer homology of plumbed three-manifolds, Geom. Topol., 7, 185-224 (2003) · Zbl 1130.57302 · doi:10.2140/gt.2003.7.185
[26] Ozsv\'{a}th, Peter; Szab\'{o}, Zolt\'{a}n, Holomorphic disks and knot invariants, Adv. Math., 186, 1, 58-116 (2004) · Zbl 1062.57019 · doi:10.1016/j.aim.2003.05.001
[27] ozsvath2004holomorphicpropr Peter Ozsv\'ath and Zolt\'an Szab\'o, Holomorphic disks and three-manifold invariants: properties and applications, Ann. Math. 159 (2004), no. 3, 1159-1245. · Zbl 1081.57013
[28] ozsvath2004holomorphic Peter Ozsv\'ath and Zolt\'an Szab\'o, Holomorphic disks and topological invariants for closed three-manifolds, Ann. Math. 159 (2004), no. 3, 1027-1158. · Zbl 1073.57009
[29] piccirillo Lisa Piccirillo, Shake genus and slice genus, to appear in Geom. Topol. · Zbl 1464.57005
[30] Plamenevskaya, Olga, Bounds for the Thurston-Bennequin number from Floer homology, Algebr. Geom. Topol., 4, 399-406 (2004) · Zbl 1070.57014 · doi:10.2140/agt.2004.4.399
[31] rasmussen2003floer Jacob A. Rasmussen, Floer homology and knot complements, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D)–Harvard University, 2003.
[32] Rasmussen, Jacob, Lens space surgeries and a conjecture of Goda and Teragaito, Geom. Topol., 8, 1013-1031 (2004) · Zbl 1055.57010 · doi:10.2140/gt.2004.8.1013
[33] Rudolph, Lee, An obstruction to sliceness via contact geometry and “classical” gauge theory, Invent. Math., 119, 1, 155-163 (1995) · Zbl 0843.57011 · doi:10.1007/BF01245177
[34] Schneiderman, Rob, Algebraic linking numbers of knots in 3-manifolds, Algebr. Geom. Topol., 3, 921-968 (2003) · Zbl 1039.57005 · doi:10.2140/agt.2003.3.921
[35] Thurston, William P., A norm for the homology of \(3\)-manifolds, Mem. Amer. Math. Soc., 59, 339, i-vi and 99-130 (1986) · Zbl 0585.57006
[36] Yildiz, Eylem Zeliha, A note on knot concordance, Algebr. Geom. Topol., 18, 5, 3119-3128 (2018) · Zbl 1398.57027 · doi:10.2140/agt.2018.18.3119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.