×

The semi-analytical modeling and vibration reduction analysis of the cylindrical shell with piezoelectric shunt damping patches. (English) Zbl 1529.74025

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
74K25 Shells
74F15 Electromagnetic effects in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids
Full Text: DOI

References:

[1] Du, D. X.; Sun, W.; Yan, X. F.; Liu, H. H.; Xu, K. P.; Qin, Z. Y., Modeling and analysis of nonlinear vibrations for a coupling hard-coated ring disc-cylindric shell structure under piecewise-continuous coupling conditions, International Journal of Mechanical Sciences, 215, 106940 (2022) · doi:10.1016/j.ijmecsci.2021.106940
[2] Yang, C. M.; Jin, G. Y.; Liu, Z. G.; Wang, X. R.; Miao, X. H., Vibration and damping analysis of thick sandwich cylindrical shells with a viscoelastic core under arbitrary boundary conditions, International Journal of Mechanical Sciences, 92, 162-177 (2015) · doi:10.1016/j.ijmecsci.2014.12.003
[3] Xu, K. P.; Chen, Z. S.; Sun, W., Optimization of position, size and thickness of viscoelastic damping patch for vibration reduction of a cylindrical shell structure, Composite Structures, 276, 114573 (2021) · doi:10.1016/j.compstruct.2021.114573
[4] Plattenburg, J.; Dreyer, J.; Singh, R., Vibration control of a cylindrical shell with concurrent active piezoelectric patches and passive cardboard liner, Mechanical Systems and Signal Processing, 91, 3, 422-437 (2016)
[5] Yan, B.; Wang, K.; Hu, Z. F.; Wu, C. Y.; Zhang, X. N., Shunt damping vibration control technology: a review, Applied Sciences, 7, 5, 494 (2017) · doi:10.3390/app7050494
[6] Junior, V. L.; Steffen, V.; Savi, M. A., Piezoelectric structural vibration control, Dynamics of Smart Systems and Structures, 12, 289-309 (2016)
[7] Gripp, J. A B.; Rade, D. A., Vibration and noise control using shunted piezoelectric transducers: a review, Mechanical Systems and Signal Processing, 112, 359-383 (2018) · doi:10.1016/j.ymssp.2018.04.041
[8] Yang, Z.; Sun, L.; Zhang, C. L.; Zhang, C. Z.; Gao, C. F., Analysis of a composite piezoelectric semiconductor cylindrical shell under the thermal loading, Mechanics of Materials, 164, 104153 (2022) · doi:10.1016/j.mechmat.2021.104153
[9] Bo, L. D.; He, H. N.; Gardonio, P.; Li, Y.; Jiang, J. Z., Design tool for elementary shunts connected to piezoelectric patches set to control multi-resonant flexural vibrations, Journal of Sound and Vibration, 520, 116554 (2022) · doi:10.1016/j.jsv.2021.116554
[10] Pernod, L.; Lossouarn, B.; Astolfi, J. A.; Deu, J. F., Vibration damping of marine lifting surfaces with resonant piezoelectric shunts, Journal of Sound and Vibration, 496, 115921 (2021) · doi:10.1016/j.jsv.2020.115921
[11] Motlagh, P. L.; Bediz, B.; Basdogan, I., A spectral Chebyshev solution for electromechanical analysis of thin curved panels with multiple integrated piezo-patches, Journal of Sound and Vibration, 486, 115612 (2020) · doi:10.1016/j.jsv.2020.115612
[12] Araújo, A. L.; Madeira, J. F A., Optimal passive shunted damping configurations for noise reduction in sandwich panels, Journal of Vibration and Control, 26, 13-14, 1110-1118 (2020) · doi:10.1177/1077546320910542
[13] Kerboua, M.; Megnounif, A.; Benguediab, M.; Benrahou, K. H.; Kaoulala, F., Vibration control beam using piezoelectric-based smart materials, Composite Structures, 123, 430-442 (2015) · doi:10.1016/j.compstruct.2014.12.044
[14] He, J. C.; Tan, X.; Tao, W.; Wu, X. H.; He, H.; Chen, G. P., Reduction of structural vibrations with the piezoelectric stacks ring, International Journal of Applied Electromagnetics and Mechanics, 64, 1-4, 729-736 (2020) · doi:10.3233/JAE-209384
[15] Cross, C. J.; Fleeter, S., Shunted piezoelectrics for passive control of turbomachine blading flow-induced vibrations, Smart Materials and Structures, 11, 2, 239-248 (2002) · doi:10.1088/0964-1726/11/2/307
[16] Neubauer, M.; Wallascheck, J., Vibration damping with shunted piezoceramics: fundamentals and technical applications, Mechanical Systems and Signal Processing, 36, 1, 36-52 (2013) · doi:10.1016/j.ymssp.2011.05.011
[17] Lyu, X. F.; Chen, F.; Ren, Q. Q.; Tang, Y.; Ding, Q.; Yang, T. Z., Ultra-thin piezoelectric lattice for vibration suppression in pipe conveying fluid, Acta Mechanica Solida Sinica, 33, 6, 770-780 (2020) · doi:10.1007/s10338-020-00174-z
[18] Liu, J.; Li, L.; Huang, X.; Jezequel, L., Dynamic characteristics of the blisk with synchronized switch damping based on negative capacitor, Mechanical Systems and Signal Processing, 95, 425-445 (2017) · doi:10.1016/j.ymssp.2017.03.049
[19] Thorp, O.; Ruzzene, M.; Baz, A., Attenuation of wave propagation in fluid-loaded shells with periodic shunted piezoelectric rings, Smart Structures and Materials, 14, 4, 594-604 (2005) · doi:10.1088/0964-1726/14/4/018
[20] Yin, D. J.; Yi, K. J.; Liu, Z. Y.; Zhang, A. F.; Zhu, R., Design of cylindrical metashells with piezoelectric materials and digital circuits for multi-modal vibration control, Frontiers in Physics, 10, 958141 (2022) · doi:10.3389/fphy.2022.958141
[21] Saravanos, D. A., Passively damped laminated piezoelectric shell structures with integrated electric networks, AIAA Journal, 38, 7, 1260-1268 (2000) · doi:10.2514/2.1096
[22] Li, H.; Wang, Z. H.; Lyu, H. Y.; Zhou, Z. X.; Han, Q. K.; Liu, J. G.; Qin, Z. Y., Nonlinear vibration analysis of fiber reinforced composite cylindrical shells with partial constrained layer damping treatment, Thin-Walled Structures, 157, 107000 (2020) · doi:10.1016/j.tws.2020.107000
[23] Song, X. Y.; Cao, T. N.; Gao, P. X.; Han, Q. K., Vibration and damping analysis of cylindrical shell treated with viscoelastic damping materials under elastic boundary conditions via a unified Rayleigh-Ritz method, International Journal of Mechanical Sciences, 165, 105158 (2020) · doi:10.1016/j.ijmecsci.2019.105158
[24] Taskin, M.; Arikoglu, A.; Demir, O., Vibration and damping analysis of sandwich cylindrical shells by the GDQM, AIAA Journal, 57, 7, 3040-3051 (2019) · doi:10.2514/1.J058128
[25] Jin, G. Y.; Yang, C. M.; Liu, Z. G.; Gao, S. Y.; Zhang, C. Y., A unified method for the vibration and damping analysis of constrained layer damping cylindrical shells with arbitrary boundary conditions, Composite Structures, 130, 124-142 (2015) · doi:10.1016/j.compstruct.2015.04.017
[26] Du, D. X.; Sun, W.; Yan, X. F.; Xu, K. P., Free vibration analysis of rotating thin-walled cylindrical shells with hard coating based on Rayleigh-Ritz method, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 235, 10, 1170-1186 (2021) · doi:10.1177/0954410020967243
[27] Vidoli, S.; Dell’Isola, F., Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks, European Journal of Mechanics-A/Solids, 20, 3, 435-456 (2001) · Zbl 0988.74047 · doi:10.1016/S0997-7538(01)01144-5
[28] Porfiri, M.; Dell’Isola, F.; Mascioli, F. M F., Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers, International Journal of Circuit Theory and Applications, 32, 4, 167-198 (2010) · Zbl 1050.94550 · doi:10.1002/cta.273
[29] Casadei, F.; Ruzzene, M.; Dozio, L.; Cunefare, K. A., Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates, Smart Materials and Structures, 19, 1, 015002 (2010) · doi:10.1088/0964-1726/19/1/015002
[30] Spadoni, A.; Ruzzene, M.; Cunefare, K., Vibration and wave propagation control of plates with periodic arrays of shunted piezoelectric patches, Journal of Intelligent Material Systems and Structures, 20, 8, 979-990 (2009) · doi:10.1177/1045389X08100041
[31] Toftekr, J. F.; Høgsberg, J., On the inclusion of structural loading and damping in piezoelectric shunt tuning, Journal of Sound and Vibration, 498, 12, 115960 (2021) · doi:10.1016/j.jsv.2021.115960
[32] Park, C. H.; Inman, D. J., Enhanced piezoelectric shunt design, Shock and Vibration, 10, 2, 127-133 (2003) · doi:10.1155/2003/863252
[33] Berardengo, M.; Høgsberg, J.; Manzoni, S.; Vanali, M.; Brandt, A.; Godi, T., LRLC-shunted piezoelectric vibration absorber, Journal of Sound and Vibration, 474, 115268 (2020) · doi:10.1016/j.jsv.2020.115268
[34] Gardonio, P.; Zientek, M.; Bo, L. D., Panel with self-tuning shunted piezoelectric patches for broadband flexural vibration control, Mechanical Systems and Signal Processing, 134, 106299 (2019) · doi:10.1016/j.ymssp.2019.106299
[35] Junior, C. D M.; Erturk, A.; Inman, D. J., An electromechanical finite element model for piezoelectric energy harvester plates, Journal of Sound and Vibration, 327, 1-2, 9-25 (2009) · doi:10.1016/j.jsv.2009.05.015
[36] Thomas, O.; Ducarne, J.; Deu, J. F., Performance of piezoelectric shunts for vibration reduction, Smart Materials and Structures, 21, 1, 015008 (2011) · doi:10.1088/0964-1726/21/1/015008
[37] Hu, J. Y.; Li, Z. H.; Sun, Y.; Li, Q. H., Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator, Chinese Physics B, 25, 12, 127701 (2016) · doi:10.1088/1674-1056/25/12/127701
[38] Davis, C. L.; Lesieutre, G. A., A modal strain energy approach to the prediction of resistively shunted piezoceramic damping, Journal of Sound and Vibration, 184, 1, 129-139 (1995) · Zbl 0973.74571 · doi:10.1006/jsvi.1995.0308
[39] Liao, Y. B.; Sodano, H. A., Piezoelectric damping of resistively shunted beams and optimal parameters for maximum damping, Journal of Vibration and Acoustics, 132, 4, 041014 (2010) · doi:10.1115/1.4001505
[40] Fein, O. M.; Gaul, L., On the application of shunted piezoelectric material to enhance structural damping of a plate, Journal of Intelligent Material Systems and Structures, 15, 9-10, 737-743 (2004) · doi:10.1177/1045389X04041936
[41] Bisheh, H.; Rabczuk, T.; Wu, N., Effects of nanotube agglomeration on wave dynamics of carbon nanotube-reinforced piezocomposite cylindrical shells, Composites Part B, 187, 107739 (2020) · doi:10.1016/j.compositesb.2019.107739
[42] Li, M.; Sun, W.; Liu, Y.; Ma, H. W., Influence analysis of control signal phase on the vibration reduction effect of active constrained layer damping, Applied Acoustics, 190, 108658 (2022) · doi:10.1016/j.apacoust.2022.108658
[43] Hagood, N. W.; Flotow, A. V., Damping of structural vibrations with piezoelectric materials and passive electrical networks, Journal of Sound and Vibration, 146, 2, 243-268 (1991) · doi:10.1016/0022-460X(91)90762-9
[44] Fernandes, A.; Pouget, J., Structural response of composite plates equipped with piezoelectric actuators, Computers and Structures, 84, 22-23, 1459-1470 (2006) · doi:10.1016/j.compstruc.2006.01.014
[45] Chai, Q. D.; Wang, Y. Q.; Teng, M. W., Nonlinear free vibration of spinning cylindrical shells with arbitrary boundary conditions, Applied Mathematics and Mechanics, 43, 8, 1203-1218 (2022) · Zbl 1505.74068 · doi:10.1007/s10483-022-2892-7
[46] Li, C. F.; Li, P. Y.; Zhang, Z. X.; Wen, B. C., Optimal locations of discontinuous piezoelectric laminated cylindrical shell with point supported elastic boundary conditions for vibration control, Composite Structures, 233, 111575 (2020) · doi:10.1016/j.compstruct.2019.111575
[47] Sheng, G. G.; Wang, X., Nonlinear vibration control of functionally graded laminated cylindrical shells, Composites Part B: Engineering, 52, 1-10 (2013) · doi:10.1016/j.compositesb.2013.03.008
[48] Sun, S. P.; Cao, D. Q.; Han, Q. K., Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh-Ritz method, International Journal of Mechanical Sciences, 68, 180-189 (2013) · doi:10.1016/j.ijmecsci.2013.01.013
[49] Chen, Z. S.; Du, D. X.; Sun, W., Solution of nonlinear eigenvalues for the viscoelastic damped cylindrical shell considering the frequency dependence of viscoelastic materials, Thin-Walled Structures, 173, 109013 (2022) · doi:10.1016/j.tws.2022.109013
[50] Zhang, D. G., The Lagrange dynamic equations of multi-rigidbody systems with external shocks, Applied Mathematics and Mechanics, 17, 6, 589-595 (1996) · Zbl 0904.70010 · doi:10.1007/BF00119758
[51] Du, X. K.; Chen, Y. Z.; Zhang, J.; Guo, X.; Li, L.; Zhang, D. G., Nonlinear coupling modeling and dynamics analysis of rotating flexible beams with stretching deformation effect, Applied Mathematics and Mechanics, 44, 1, 125-140 (2023) · Zbl 1510.74045 · doi:10.1007/s10483-023-2951-9
[52] Yin, T. T.; Deng, Z. C.; Hu, W. P.; Wang, X. D., Dynamic modeling and simulation of deploying process for space solar power satellite receiver, Applied Mathematics and Mechanics, 39, 2, 261-274 (2018) · doi:10.1007/s10483-018-2293-6
[53] Bilasse, M.; Daya, E. M.; Azrar, L., Linear and nonlinear vibrations analysis of viscoelastic sandwich beams, Journal of Sound and Vibration, 329, 23, 4950-4969 (2010) · doi:10.1016/j.jsv.2010.06.012
[54] Shi, Y. M.; Sol, H.; Hua, H. X., Material parameter identification of sandwich beams by an inverse method, Journal of Sound and Vibration, 290, 3, 1234-1255 (2006) · doi:10.1016/j.jsv.2005.05.026
[55] Kim, S. Y.; Lee, D. H., Identification of fractional-derivative-model parameters of viscoelastic materials from measured FRFs, Journal of Sound and Vibration, 324, 3-5, 570-586 (2009) · doi:10.1016/j.jsv.2009.02.040
[56] Marano, G. C.; Quaranta, G.; Monti, G., Modified genetic algorithm for the dynamic identification of structural systems using incomplete measurements, Computer-Aided Civil and Infrastructure Engineering, 26, 2, 92-110 (2011) · doi:10.1111/j.1467-8667.2010.00659.x
[57] Liu, X. D.; Sun, W.; Gao, Z. H., Optimization of hoop layouts for reducing vibration amplitude of pipeline system using the semi-analytical model and genetic algorithm, IEEE Access, 8, 224394-224408 (2020) · doi:10.1109/ACCESS.2020.3044087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.