×

Propagation characteristics of love-type wave at the electro-mechanical imperfect interface of a piezoelectric fiber-reinforced composite layer overlying a piezoelectric half-space. (English) Zbl 07477411

Summary: In the present work, the micro-mechanical modeling of a piezoelectric fiber-reinforced composite (PFRC) is established using the analytical techniques of Strength of Materials and Rule of Mixtures, along with analyzing some of its electro-mechanical advantages over monolithic piezoelectric materials. Thereafter, the characteristics of a Love-type wave propagating at the imperfect interface of a layered structure comprising a PFRC layer overlying a piezoelectric half-space are analytically studied. The interface is classified into five exclusive types, viz. Mechanically compliant dielectrically weakly and highly conducting, welded interface, low dielectric interface, and grounded metallized interface, accounting for various realistic scenarios in different engineering applications. With the aid of suitable boundary conditions accounting for the different types of interfaces, the dispersion relations of the Love-type wave are derived considering both electrically open and short conditions at the free surface. The natures of phase velocity under the influence of the different interfacial imperfections and fiber volume fractions are graphically illustrated. The obtained results are validated by reducing and matching them with some results in the extant literature on Love wave propagation in terms of mathematical equations and graphs. The influences of the material parameters on the electromechanical coupling factor and piezoelectric coupling parameter are meticulously analyzed as these are vital properties that govern the efficiency of transducers and sensors. The outcomes of the present work may be applied in several scientific and engineering disciplines utilizing electroelastic transducers, sensors, capacitors, actuators, and in applications involving SAW devices and Love wave sensors to enhance their performance for obtaining high output in the long run.

MSC:

74-XX Mechanics of deformable solids
Full Text: DOI

References:

[1] Al-Ajmi, M. A.; Benjeddou, A., Damage indication in smart structures using modal effective electromechanical coupling coefficients, Smart Mater. Struct., 17, 3, Article 035023 pp. (2008)
[2] Alshaikh, F. A., The mathematical modelling for studying the influence of the initial stresses and relaxation times on reflection and refraction waves in piezothermoelastic half-space, Appl. Math., 3, 8 (2012)
[3] Alshits, V.; Shuvalov, A. L., Bragg reflection of sound in a periodic structure of piezoelectric-crystal layers with superconducting or metalized interlayers, J. Exp. Theor. Phys., 103, 1356-1370 (1993)
[4] Anton, S. R.; Sodano, H. A., A review of power harvesting using piezoelectric materials (2003-2006), Smart Mater. Struct., 16, 3, R1-R21 (2007)
[5] Basak, S.; Raman, A.; Garimella, S. V., Dynamic response optimization of piezoelectrically excited thin resonant beams, J. Vib. Acoust., 127, 1, 18-27 (2005)
[6] Beeby, S. P.; Tudor, M. J.; White, N. M., Energy harvesting vibration sources for microsystems applications, Meas. Sci. Technol., 17, 12, R175-R195 (2006)
[7] Belloli, A.; Ermanni, P., Optimum placement of piezoelectric ceramic modules for vibration suppression of highly constrained structures, Smart Mater. Struct., 16, 5, 1662-1671 (2007)
[8] Benveniste, Y.; Dvorak, G., Uniform fields and universal relations in piezoelectric composites, J. Mech. Phys. Solid., 40, 1295-1312 (1992) · Zbl 0763.73046
[9] Berger, H.; Kari, S.; Gabbert, U.; Rodriguez-Ramos, R.; Guinovart, R.; Otero, J. A.; Bravo-Castillero, J., An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites, Int. J. Solid Struct., 42, 21-22, 5692-5714 (2005) · Zbl 1330.74060
[10] Bisheh, H.; Wu, N.; Hui, D., Polarization effects on wave propagation characteristics of piezoelectric coupled laminated fiber-reinforced composite cylindrical shells, Int. J. Mech. Sci., 161, 105028 (2019)
[11] Chaki, M. S.; Singh, A. K., The impact of reinforcement and piezoelectricity on SH wave propagation in irregular imperfectly-bonded layered FGPM structures: an analytical approach, Eur. J. Mech. Solid., 80, 103872 (2020) · Zbl 1473.74073
[12] Chen, X.; Liu, D., Temperature stability of ZnO-based Love wave biosensor with SiO2 buffer layer, Sens. Actuator A Phys., 156, 2, 317-322 (2009)
[13] Cho, J.; Anderson, M.; Richards, R.; Bahr, D.; Richards, C., Optimization of electromechanical coupling for a thin-film pzt membrane: II. Experiment, J. Micromech. Microeng., 15, 10, 1797-1803 (2005)
[14] Curie, J.; Curie, P., Development by compressing polar electricity in crystals at inclined faces, Mineral Newsletter, 3, 90-93 (1880)
[15] Davis, C. L.; Lesieutre, G. A., A modal strain energy approach to the prediction of resistively shunted piezoceramic damping, J. Sound Vib., 184, 1, 129-139 (1995) · Zbl 0973.74571
[16] Du, J.; Xian, K.; Wang, J.; Yong, Y. K., Propagation of Love waves in prestressed piezoelectric layered structures loaded with viscous liquid, Acta Mech. Solida Sin., 21, 6, 542-548 (2008)
[17] Ewing, W. M.; Jardetzky, W. S.; Press, F., Elastic waves in layered media, Geol. Foren. Stockh. Forh., 80, 1, 128-129 (1958)
[18] Guha, S.; Singh, A. K., Effects of initial stresses on reflection phenomenon of plane waves at the free surface of a rotating piezothermoelastic fiber-reinforced composite half-space, Int. J. Mech. Sci., 181, 105766 (2020)
[19] Guha, S.; Singh, A. K., Plane wave reflection/transmission in imperfectly bonded initially stressed rotating piezothermoelastic fiber-reinforced composite half-spaces, Eur. J. Mech. Solid., 88, 104242 (2021) · Zbl 1485.74047
[20] Guha, S.; Singh, A. K., Influence of varying fiber volume fractions on plane waves reflecting from the stress-free/rigid surface of a piezoelectric fiber-reinforced composite half-space, Mech. Adv. Mater. Struct., 1-15 (2021)
[21] Guo, X.; Wei, P.; Li, L.; Tang, Q., Influences of mechanically and dielectrically imperfect interfaces on the reflection and transmission waves between two piezoelectric half spaces, Int. J. Solid Struct., 63, 184-205 (2015)
[22] Hill, R., Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour, J. Mech. Phys. Solid., 12, 4, 199-212 (1964)
[23] Kim, J.-S.; Wang, K. W.; Smith, E. C., High-authority piezoelectric actuation system synthesis through mechanical resonance and electrical tailoring, J. Intell. Mater. Syst. Struct., 16, 1, 21-31 (2005)
[24] Kumar, A.; Chakraborty, D., Effective properties of thermo-electromechanically coupled piezoelectric fiber reinforced composites, Mater. Des., 30, 4, 1216-1222 (2009)
[25] Lavrentyev, A. I.; Rokhlin, S., Ultrasonic spectroscopy of imperfect contact interfaces between a layer and two solids, J. Acoust. Soc. Am., 103, 2, 657-664 (1998)
[26] Li, P.; Jin, F., Excitation and propagation of shear horizontal waves in a piezoelectric layer imperfectly bonded to a metal or elastic substrate, Acta Mech., 226, 2, 267-284 (2015) · Zbl 1323.74030
[27] Liu, J.; He, S., Properties of Love waves in layered piezoelectric structures, Int. J. Solid Struct., 47, 2, 169-174 (2010) · Zbl 1183.74120
[28] Liu, H.; Wang, Z. K.; Wang, T. J., Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure, Int. J. Solid Struct., 38, 1, 37-51 (2001) · Zbl 1005.74033
[29] Mallik, N.; Ray, M., Effective coefficients of piezoelectric fiber-reinforced composites, AIAA J., 41, 704-710 (2003)
[30] Nagy, P. B., Ultrasonic classification of imperfect interfaces, J. Nondestr. Eval., 11, 3-4, 127-139 (1992)
[31] Ninh, D. G.; Bich, D. H., Characteristics of nonlinear vibration of nanocomposite cylindrical shells with piezoelectric actuators under thermo-mechanical loads, Aero. Sci. Technol., 77, 595-609 (2018)
[32] Ninh, D. G.; Tien, N. D., Investigation for electro-thermo-mechanical vibration of nanocomposite cylindrical shells with an internal fluid flow, Aero. Sci. Technol., 92, 501-519 (2019)
[33] Ninh, D. G.; Hoang, V. N.V.; Le Huy, V., A new structure study: vibrational analyses of FGM convex-concave shells subjected to electro-thermal-mechanical loads surrounded by Pasternak foundation, Eur. J. Mech. Solid., 86, 104168 (2021) · Zbl 1478.74033
[34] Ninh, D. G.; Eslami, H.; Hoang, V. N.V., Dynamical behaviors of conveying-fluid nanocomposite toroidal shell segments with piezoelectric layer in thermal environment using the Reddy’s third-order shear deformation shell theory, Thin-Walled Struct., 159, 107204 (2021)
[35] Otero, J. A.; Rodríguez-Ramos, R.; Monsivais, G.; Stern, C.; Martínez, R.; Dario, R., Interfacial waves between two magneto-electro-elastic half-spaces with magneto-electro-mechanical imperfect interface, Phil. Mag. Lett., 94, 10, 629-638 (2014)
[36] Pang, Y.; Liu, J.-X., Reflection and transmission of plane waves at an imperfectly bonded interface between piezoelectric and piezomagnetic media, Eur. J. Mech. Solid., 30, 5, 731-740 (2011) · Zbl 1278.74087
[37] Qian, Z. H.; Jin, F.; Hirose, S., Piezoelectric Love waves in an FGPM layered structure, Mech. Adv. Mater. Struct., 18, 1, 77-84 (2011)
[38] Ray, M. C., Micromechanics of piezoelectric composites with improved effective piezoelectric constant, Int. J. Mech. Mater. Des., 3, 361-371 (2006)
[39] Rocha, I. B.C. M.; van der Meer, F. P.; Raijmaekers, S.; Lahuerta, F.; Nijssen, R. P.L.; Mikkelsen, L. P.; Sluys, L. J., A combined experimental/numerical investigation on hygrothermal aging of fiber-reinforced composites, Eur. J. Mech. Solid., 73, 407-419 (2019)
[40] Rokhlin, S. I.; Wang, Y., Analysis of boundary conditions for elastic wave interaction with an interface between two solids, J. Acoust. Soc. Am., 89, 2, 503-515 (1991)
[41] Samal, S. K.; Chattaraj, R., Surface wave propagation in fiber-reinforced anisotropic elastic layer between liquid saturated porous half space and uniform liquid layer, Acta Geophys., 59, 3, 470-482 (2011)
[42] Schoenberg, M., Elastic wave behavior across linear slip interfaces, J. Acoust. Soc. Am., 68, 5, 1516-1521 (1980) · Zbl 0452.73012
[43] Silva, E. C.N.; Kikuchi, N., Design of piezoelectric transducers using topology optimization, Smart Mater. Struct., 8, 3, 350-364 (1999)
[44] Singh, S.; Singh, A. K., Anti-plane surface and interfacial waves influenced by layer reinforcement in Piezo-Electro-Magnetic structures with surface energy, Eur. Phys. J. Plus., 136, 3, 1-20 (2021)
[45] Singh, A. K.; Rajput, P.; Chaki, M. S., Analytical Study of Love Wave Propagation in Functionally Graded Piezo-Poroelastic Media with Electroded Boundary and Abruptly Thickened Imperfect Interface, 1-25 (2020), Waves Random Complex Media
[46] Singh, A. K.; Singh, S.; Kumari, R.; Ray, A., Impact of point source and mass loading sensitivity on the propagation of an SH wave in an imperfectly bonded FGPPM layered structure, Acta Mech., 231, 6, 2603-2627 (2020) · Zbl 1436.74031
[47] Singh, A. K.; Mahto, S.; Guha, S., Analysis of Plane Wave Reflection Phenomenon from the Surface of a Micro-mechanically Modeled Piezomagnetic Fiber-Reinforced Composite Half-Space, 1-22 (2021), Waves Random Complex Media
[48] Singh, S.; Singh, A. K.; Guha, S., Impact of interfacial imperfections on the reflection and transmission phenomenon of plane waves in a porous-piezoelectric model, Appl. Math. Model., 100, 656-675 (2021) · Zbl 1481.74380
[49] Singh, S.; Singh, A. K.; Guha, S., Shear waves in a piezo-fiber-reinforced-poroelastic composite structure with sandwiched functionally graded buffer layer: power series approach, Eur. J. Mech. Solid., 104470 (2021) · Zbl 1512.74052
[50] Tian, R.; Liu, J.; Pan, E.; Wang, Y., SH waves in multilayered piezoelectric semiconductor plates with imperfect interfaces, Eur. J. Mech. Solid., 81, 103961 (2020) · Zbl 1475.74072
[51] Tien, N. D.; Hoang, V. N.V.; Ninh, D. G.; Huy, V. L.; Hung, N. C., Nonlinear dynamics and chaos of a nanocomposite plate subjected to electro-thermo-mechanical loads using Flügge-Lur’e-Bryrne theory, J. Vib. Control, 27, 9-10, 1184-1197 (2021)
[52] Wang, Z. K.; Huang, S. H., Stress intensification near an elliptical crack border, Theor. Appl. Fract. Mech., 22, 3, 229-237 (1995)
[53] Wang, X.; Sudak, L. J., A piezoelectric screw dislocation interacting with an imperfect piezoelectric bimaterial interface, Int. J. Solid Struct., 44, 10, 3344-3358 (2007) · Zbl 1121.74366
[54] Xia, X. K.; Shen, H. S., Nonlinear vibration and dynamic response of FGM plates with piezoelectric fiber reinforced composite actuators, Compos. Struct., 90, 2, 254-262 (2009)
[55] Yang, J., An introduction to the theory of piezoelectricity, New York Springer, 9, 9 (2015)
[56] Yuan, X.; Jiang, Q.; Yang, F., Wave reflection and transmission in rotating and stressed pyroelectric half-planes, Appl. Math. Comput., 289, 281-297 (2016) · Zbl 1410.74026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.