×

Solution to boundary value problems on linear elastic confocal elliptic domain based on collocation technique. (English) Zbl 1533.74004

Summary: Domains with elliptic boundaries are regularly pursued in Elasticity to elucidate the role of circular asymmetry and are associated with many classical closed form solutions. The work under consideration presents a unified semi-analytical approach to solve for stress and displacement field while being subjected to all kinds of plausible boundary conditions on any variant of elliptic geometry i.e. elliptic cylinder to confocal elliptic annulus to elliptic hole in an infinite plane. The generalized representation of Airy stress function in elliptical co-ordinates truncated to finite terms is considered and the associated coefficients are deduced to ensure boundary conditions using collocation technique. The correctness and effectiveness of the method is demonstrated through solution to a variety of problems and its validation via an independent finite element simulation.

MSC:

74B05 Classical linear elasticity
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
74S99 Numerical and other methods in solid mechanics

Software:

COMSOL; Matlab
Full Text: DOI

References:

[1] Timoshenko, SP; Goodier, JN, Theory of Elasticity (1970), New York: McGraw-Hill, New York · Zbl 0266.73008
[2] Meleshko, V., Selected topics in the history of the two-dimensional biharmonic problem, ASME. Appl. Mech. Rev., 56, 1, 33-85 (2003) · doi:10.1115/1.1521166
[3] Jog, C.S.: Continuum Mechanics: Foundations and Applications of Mechanics, vol. 1, 3rd edn. Cambridge University Press, New Delhi (2015)
[4] Inglis, CE, Stresses in rectangular plates clamped at their edges and loaded with a uniformly distributed pressure, Trans. Inst. Naval. Arch., 67, 147-165 (1925)
[5] Savin, GN, Stress Concentration Around Holes (1961), New York: Pergamon Press, New York · Zbl 0124.18303
[6] Jaswon, M.; Bhargava, R., Two-dimensional elastic inclusion problems, Math. Proc. Cambridge Philos., 57, 3, 669-680 (1961) · Zbl 0124.40102 · doi:10.1017/S0305004100035702
[7] Milne-Thomson, LM, Plane Elastic Systems (1968), Berlin: Springer, Berlin · Zbl 0169.55902 · doi:10.1007/978-3-642-87870-1
[8] Muskhelishvili, NI, Some Basic Problems of the Mathematical Theory of Elasticity (1977), Dordrecht: Springer, Dordrecht · doi:10.1007/978-94-017-3034-1
[9] England, AH, Complex Variable Methods in Elasticity (2013), New York: Dover Publications, New York · Zbl 0222.73017
[10] Seika, M., The stresses in an elliptic ring under concentrated loading, Z. Angew. Math. Mech., 38, 3-4, 99-105 (1958) · Zbl 0084.40804 · doi:10.1002/zamm.19580380304
[11] Batista, M., Stresses in a confocal elliptic ring subject to uniform pressure, J. Strain Anal. Eng. Des., 34, 3, 217-221 (1999) · doi:10.1243/0309324991513768
[12] Tsukrov, I.; Novak, J., Effective elastic properties of solids with two-dimensional inclusions of irregular shapes, Int. J .Solids Struct., 41, 6905-6924 (2004) · Zbl 1179.74111 · doi:10.1016/j.ijsolstr.2004.05.037
[13] Tsukrov, I.; Kachanov, M., Stress concentrations and microfracturing patterns in a brittle elastic solid with interacting pores of diverse shapes, Int. J. Solids Struct., 34, 22, 2887-2904 (1997) · Zbl 0939.74589 · doi:10.1016/S0020-7683(96)00202-8
[14] Buchwald, V., A note on a method of Milne-Thomson, J. Aust. Math. Soc., 3, 1, 93-98 (1963) · Zbl 0123.18902 · doi:10.1017/S144678870002766X
[15] Timpe, A., Die Airysche Funktion fur den Ellipsenring, Math. Z., 17, 189-205 (1923) · JFM 49.0345.02 · doi:10.1007/BF01504343
[16] Ghosh, S., On the solution of the equations of elastic equilibrium suitable for ellitptic boundaries, Trans. Am. Math. Soc., 32, 1, 47-60 (1930) · JFM 56.0688.05 · doi:10.1090/S0002-9947-1930-1500515-9
[17] Goree, J., Approximate determination of contact stresses in an infinite plate containing a smooth rigid elliptic insert, ASME J. Appl. Mech., 32, 2, 437-439 (1965) · doi:10.1115/1.3625822
[18] Chen, HSS; Dick, DDC, Elastostatic problems of arbitrarily shaped doubly connected plates, J. Hydronautics, 3, 4, 196-198 (1969) · doi:10.2514/3.62826
[19] Crouch, S.; Mogilevskaya, S., Loosening of elastic inclusions, Int. J. Solids. Struct., 43, 6, 1638-1668 (2006) · Zbl 1120.74375 · doi:10.1016/j.ijsolstr.2005.03.050
[20] Buchwald, VT; Davies, GAO, Plane elastostatic boundary value problems of doubly connected regions I, Q.J. Mech. Appl. Math., 17, 1, 1-15 (1964) · Zbl 0119.19202 · doi:10.1093/qjmam/17.1.1
[21] Jones, N.; Hozos, D., A study of the stresses around elliptical holes in flat plates, ASME. J. Eng. Ind., 93, 2, 688-694 (1971) · doi:10.1115/1.3427982
[22] Alexandrakis, A.: Stresses around neighbouring elliptical holes in flat plates. M.Sc. Thesis. Department of Ocean Engineering, Massachusetts Institute of Technology, USA
[23] Kim, EJ; Kim, I., Approximate analytic solution of the potential flow around a rectangle, Am. J. Phys., 88, 25-30 (2020) · doi:10.1119/10.0000264
[24] Velazquez, E., Kosmatka, J.B.: Stresses in half-elliptic curved beams subjected to transverse tip force. ASME J. Appl. Mech., 80, 011010-1:7 (2013)
[25] Singh, G.; Bhandakkar, TK, Simplified approach to solution of mixed boundary value problems on homogeneous circular domain in elasticity, ASME. J. Appl. Mech., 86, 2, 021007 (2019) · doi:10.1115/1.4041965
[26] Chawde, DP; Bhandakkar, TK, Mixed boundary value problems in power-law functionally graded circular annulus, Int. J. Pres. Vess. Piping, 192, 104402 (2021) · doi:10.1016/j.ijpvp.2021.104402
[27] COMSOL, Inc. COMSOL Multiphysics. https://www.comsol.com
[28] MATLAB. version R2021a. Natick, Massachusetts: The MathWorks Inc
[29] Ting, T., Asymptotic solution near the apex of an elastic wedge with curved boundaries, Q. Appl. Math., 42, 4, 467-476 (1985) · Zbl 0568.73016 · doi:10.1090/qam/766883
[30] Sinclair, GB, Stress singularities in classical elasticity-Part I: removal, interpretation and analysis, Appl. Mech. Rev., 57, 4, 251-298 (2004) · doi:10.1115/1.1762503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.