×

Diagrams in the mod \(p\) cohomology of Shimura curves. (English) Zbl 1480.11081

Summary: We prove a local-global compatibility result in the mod \(p\) Langlands program for \(\operatorname{GL}_2(\mathbb{Q}_{p^f})\). Namely, given a global residual representation \(\bar{r}\) appearing in the mod \(p\) cohomology of a Shimura curve that is sufficiently generic at \(p\) and satisfies a Taylor-Wiles hypothesis, we prove that the diagram occurring in the corresponding Hecke eigenspace of mod \(p\) completed cohomology is determined by the restrictions of \(\bar{r}\) to decomposition groups at \(p\). If these restrictions are moreover semisimple, we show that the \((\varphi ,\Gamma )\)-modules attached to this diagram by Breuil give, under Fontaine’s equivalence, the tensor inductions of the duals of the restrictions of \(\bar{r}\) to decomposition groups at \(p\).

MSC:

11G18 Arithmetic aspects of modular and Shimura varieties
14G35 Modular and Shimura varieties
11F80 Galois representations
11S37 Langlands-Weil conjectures, nonabelian class field theory
22E50 Representations of Lie and linear algebraic groups over local fields

References:

[1] Breuil, C., Sur quelques représentations modulaires et \(p\)-adiques de \({\rm GL_2}({\boldsymbol Q}_p)\). I, Compos. Math. 138 (2003), 165-188; MR 2018825. · Zbl 1044.11041
[2] Breuil, C., Diagrammes de Diamond et \((\phi , \Gamma )\)-modules, Israel J. Math. 182 (2011), 349-382; MR 2783977. · Zbl 1270.11057
[3] Breuil, C., Sur un problème de compatibilité local-global modulo \(p\) pour \({\rm GL_2}\), J. Reine Angew. Math. 692 (2014), 1-76; MR 3274546. · Zbl 1314.11036
[4] Breuil, C. and Diamond, F., Formes modulaires de Hilbert modulo \(p\) et valeurs d’extensions entre caractères galoisiens, Ann. Sci. Éc. Norm. Supér. (4)47 (2014), 905-974; MR 3294620. · Zbl 1309.11046
[5] Breuil, C. and Paškūnas, V., Towards a modulo \(p\) Langlands correspondence for \({\rm GL_2}\), Mem. Amer. Math. Soc. 216 (2012); MR 2931521. · Zbl 1245.22010
[6] Buzzard, K., Diamond, F. and Jarvis, F., On Serre’s conjecture for mod \(\ell\) Galois representations over totally real fields, Duke Math. J. 155 (2010), 105-161; MR 2730374. · Zbl 1227.11070
[7] Caraiani, A., Emerton, M., Gee, T., Geraghty, D., Paškūnas, V. and Shin, S. W., Patching and the \(p\)-adic local Langlands correspondence, Camb. J. Math. 4 (2016), 197-287; MR 3529394. · Zbl 1403.11073
[8] Caraiani, A., Emerton, M., Gee, T., Geraghty, D., Paškūnas, V. and Shin, S. W., Patching and the \(p\)-adic Langlands program for \({\rm GL_2}(\Bbb Q_p)\), Compos. Math. 154 (2018), 503-548; MR 3732208. · Zbl 1461.11157
[9] Caraiani, A. and Levin, B., Kisin modules with descent data and parahoric local models, Ann. Sci. Éc. Norm. Supér. (4)51 (2018), 181-213; MR 3764041. · Zbl 1450.11049
[10] Caruso, X., David, A. and Mézard, A., Un calcul d’anneaux de déformations potentiellement Barsotti-Tate, Trans. Amer. Math. Soc. 370 (2018), 6041-6096; MR 3814324. · Zbl 1442.11087
[11] Colmez, P., Représentations de \({\rm GL_2}({\boldsymbol Q}_p)\) et \((\phi , \Gamma )\)-modules, Astérisque330 (2010), 281-509; MR 2642409. · Zbl 1218.11107
[12] Colmez, P., Dospinescu, G., Paškūnas, V., The \(p\)-adic local Langlands correspondence for \({\rm GL_2}(\Bbb Q_p)\), Camb. J. Math. 2 (2014), 1-47; MR 3272011. · Zbl 1312.11090
[13] Emerton, M., Local-global compatibility in the \(p\)-adic Langlands program for \(\text{GL}_2/\mathbf{Q} \), Preprint (2011).
[14] Emerton, M., Gee, T. and Herzig, F., Weight cycling and Serre-type conjectures for unitary groups, Duke Math. J. 162 (2013), 1649-1722; MR 3079258. · Zbl 1283.11083
[15] Emerton, M., Gee, T. and Savitt, D., Lattices in the cohomology of Shimura curves, Invent. Math. 200 (2015), 1-96; MR 3323575. · Zbl 1396.11089
[16] Enns, J., On mod p local-global compatibility for unramified \({\rm GL}_3\), PhD thesis, University of Toronto (2018), https://tspace.library.utoronto.ca/bitstream/1807/91817/3/Enns_John_201811_PhD_thesis.pdf.
[17] Fontaine, J.-M., Représentations p-adiques des corps locaux. I, in The Grothendieck Festschrift, Vol. II, , vol. 87 (Birkhäuser, Boston, MA, 1990), 249-309; MR 1106901. · Zbl 0743.11066
[18] Gee, T., Herzig, F. and Savitt, D., General Serre weight conjectures, J. Eur. Math. Soc. (JEMS)20 (2018), 2859-2949; MR 3871496. · Zbl 1456.11093
[19] Gee, T., Liu, T. and Savitt, D., The weight part of Serre’s conjecture for \(\text{GL}(2)\), Forum Math. Pi3 (2015), e2; MR 3324938. · Zbl 1317.11045
[20] Gee, T. and Newton, J., Patching and the completed homology of locally symmetric spaces, J. Inst. Math. Jussieu (2020), doi:10.1017/S1474748020000158. · Zbl 1517.11055
[21] Grothendieck, A., Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Publ. Math. Inst. Hautes Études Sci. 24 (1965), 231; MR 0199181. · Zbl 0135.39701
[22] Harris, M. and Taylor, R., The geometry and cohomology of some simple Shimura varieties, , vol. 151 (Princeton University Press, Princeton, NJ, 2001), with an appendix by Vladimir G. Berkovich; MR 1876802. · Zbl 1036.11027
[23] Herzig, F., The weight in a Serre-type conjecture for tame \(n\)-dimensional Galois representations, Duke Math. J. 149 (2009), 37-116; MR 2541127. · Zbl 1232.11065
[24] Herzig, F., Le, D. and Morra, S., On \({\rm mod}\, p\) local-global compatibility for \({\rm GL_3}\) in the ordinary case, Compos. Math. 153 (2017), 2215-2286; MR 3705291. · Zbl 1420.11089
[25] Hu, Y., Sur quelques représentations supersingulières de \({\rm GL_2}(\Bbb Q_p^f)\), J. Algebra324 (2010), 1577-1615; MR 2673752. · Zbl 1206.22010
[26] Hu, Y., Valeurs spéciales de paramètres de diagrammes de Diamond, Bull. Soc. Math. France144 (2016), 77-115; MR 3481262. · Zbl 1355.22004
[27] Hu, Y. and Wang, H., Multiplicity one for the mod \(p\) cohomology of Shimura curves: the tame case, Math. Res. Lett. 25 (2018), 843-873; MR 3847337. · Zbl 1454.11106
[28] Ireland, K. and Rosen, M., A classical introduction to modern number theory, second edition, , vol. 84 (Springer, New York, 1990); MR 1070716. · Zbl 0712.11001
[29] Kisin, M., Crystalline representations and F-crystals, in Algebraic geometry and number theory, , vol. 253 (Birkhäuser, Boston, MA, 2006), 459-496; MR 2263197 (2007j:11163). · Zbl 1184.11052
[30] Kisin, M., Potentially semi-stable deformation rings, J. Amer. Math. Soc. 21 (2008), 513-546; MR 2373358. · Zbl 1205.11060
[31] Kisin, M., The Fontaine-Mazur conjecture for \({\rm GL_2}\), J. Amer. Math. Soc. 22 (2009), 641-690; MR 2505297. · Zbl 1251.11045
[32] Kisin, M., Moduli of finite flat group schemes, and modularity, Ann. of Math. (2)170 (2009), 1085-1180; MR 2600871. · Zbl 1201.14034
[33] Kisin, M., Deformations of \(G_{\Bbb Q_p}\!\) and \({\rm GL_2}(\Bbb Q_p)\) representations, Astérisque330 (2010), 511-528; MR 2642410. · Zbl 1233.11126
[34] Le, D., Multiplicity one for wildly ramified representations, Algebra Number Theory13 (2019), 1807-1827; MR 4017535. · Zbl 1471.11280
[35] Le, D., Le Hung, B. V. and Levin, B., Weight elimination in Serre-type conjectures, Duke Math. J. 168 (2019), 2433-2506; MR 4007598. · Zbl 1460.11077
[36] Le, D., Le Hung, B. V., Levin, B. and Morra, S., Potentially crystalline deformation rings and Serre weight conjectures: shapes and shadows, Invent. Math. 212 (2018), 1-107; MR 3773788. · Zbl 1403.11039
[37] Le, D., Le Hung, B. V., Levin, B. and Morra, S., Serre weights and Breuil’s lattice conjecture in dimension three, Forum Math. Pi8 (2020), e5; MR 4079756. · Zbl 1452.11066
[38] Le, D., Morra, S. and Park, C., On \({\rm mod}\, p\) local-global compatibility for \({\rm GL_3}(\Bbb Q_p)\) in the non-ordinary case, Proc. Lond. Math. Soc. (3)117 (2018), 790-848; MR 3873135. · Zbl 1444.11079
[39] Le, D., Morra, S. and Schraen, B., Multiplicity one at full congruence level, J. Inst. Math. Jussieu (2020), doi:10.1017/S1474748020000225. · Zbl 1489.11070
[40] Park, C. and Qian, Z., On mod p local-global compatibility for \(\text{GL}_n(\mathbf{Q}_p)\) in the ordinary case, Mém. Soc. Math. Fr., to appear. Preprint (2018), arXiv:1712.03799.
[41] Paškūnas, V., The image of Colmez’s Montreal functor, Publ. Math. Inst. Hautes Études Sci. 118 (2013), 1-191; MR 3150248. · Zbl 1297.22021
[42] Scholze, P., On the \(p\)-adic cohomology of the Lubin-Tate tower, Ann. Sci. Éc. Norm. Supér. (4)51 (2018), 811-863, with an appendix by Michael Rapoport; MR 3861564. · Zbl 1419.14031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.