×

On the effective version of Serre’s open image theorem. (English) Zbl 07828047

The paper under review studies the surjectivity of the Galois representations \[ \rho_{E,\ell} \colon \mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathrm{Aut}_\mathbb{Z}(E(\overline{\mathbb{Q}})[\ell]) \cong \mathrm{GL}_2(\mathbb{Z}/\ell \mathbb{Z}) \] associated to elliptic curves \(E\) defined over \(\mathbb{Q}\), where \(\ell \in \mathbb{N}\) is a rational prime and \(E(\overline{\mathbb{Q}})[\ell]\) denotes the set of \(\ell\)-torsion points of the elliptic curve \(E\) defined over the field of algebraic numbers.
More precisely, Theorem 1.1 of the paper under review shows that, conditionally under the validity of the generalized Riemann hypothesis, given an elliptic curve \(E\) defined over the rational numbers, which does not have complex multiplication, and a prime \(\ell \in \mathbb{N}\) such that \[ \ell > 964 \log\left( 2 b_E \right) + 5760, \] the Galois representation \(\rho_{E,\ell}\) is surjective. Here, \(b_E\) denotes the product of all the rational primes \(p \geq 3\) at which \(E\) has bad reduction.
This can be seen as an explicit version of Serre’s celebrated open image theorem [J.-P. Serre, Invent. Math. 15, 259–331 (1972; Zbl 0235.14012)], which shows that for every elliptic curve \(E\) defined over a number field \(K\), if \(E\) does not have complex multiplication then there exists a constant \(c(E)\) such that for every prime \(\ell > c(E)\) the Galois representation \(\rho_{E,\ell}\) is surjective. As explained in the introduction of the paper under review, several explicit versions of this result already exist in the literature, proven either unconditionally or assuming the generalized Riemann hypothesis. Up to date, the best unconditional upper bound is due to D. Zywina [Bull. Lond. Math. Soc. 54, No. 6, 2404–2417 (2022; Zbl 1528.11043)], and is worse than linear in the constant \(b_E\) introduced above. On the other hand, E. Larson and D. Vaintrob [Bull. Lond. Math. Soc. 46, No. 1, 197–209 (2014; Zbl 1292.11067)] have proven a conditional and unexplicit upper bound on \(c(E)\) which is of the same order of the upper bound proven in Theorem 1.1 of the paper under review. Since Larson and Vaintrob’s proof cannot easily be made explicit, the authors of the paper under review use a different proof technique, which is based on a strategy set forth by Serre himself [J.-P. Serre, Publ. Math., Inst. Hautes Étud. Sci. 54, 123–201 (1981; Zbl 0496.12011)], and on an explicit version of Chebotarev’s density theorem which the authors prove in Section 2 of the paper under review, improving slightly a result of E. Bach and J. Sorenson [Math. Comput. 65, No. 216, 1717–1735 (1996; Zbl 0853.11077)].
To conclude, the paper under review provides an interesting new conditional upper bound for the constant \(c(E)\) associated to elliptic curves \(E\) defined over \(\mathbb{Q}\), which has the virtue of being completely explicit, and also of the same order of magnitude of the best results currently available in the literature.

MSC:

11G05 Elliptic curves over global fields
11F80 Galois representations

Software:

LMFDB; SageMath

References:

[1] E.Bach and J.Sorenson, Explicit bounds for primes in residue classes, Math. Comp.65 (1996), no. 216, 1717-1735. MR 1355006. · Zbl 0853.11077
[2] J.Balakrishnan, N.Dogra, J. S.Müller, J.Tuitman, and J.Vonk, Explicit Chabauty‐Kim for the split Cartan modular curve of level 13, Ann. of Math. (2)189 (2019), no. 3, 885-944. MR 3961086 · Zbl 1469.14050
[3] B. S.Banwait, Explicit isogenies of prime degree over quadratic fields, Int. Math. Res. Not. IMRN2023 (2023), 1-48.
[4] B. S.Banwait, F.Najman, and O.Padurariu, Cyclic isogenies of elliptic curves over fixed quadratic fields, arXiv:2206.08891, 2022.
[5] N.Billerey and L. V.Dieulefait, Explicit large image theorems for modular forms, J. London Math. Soc. (2)89 (2014), no. 2, 499-523. MR 3188630 · Zbl 1328.11058
[6] Y.Bilu, P.Parent, and M.Rebolledo, Rational points on \(X^+_0(p^r)\), Ann. Inst. Fourier (Grenoble)63 (2013), no. 3, 957-984. MR 3137477 · Zbl 1307.11075
[7] G.Boxer, F.Calegari, T.Gee, and V.Pilloni, Abelian surfaces over totally real fields are potentially modular, Publ. Math. Inst. Hautes Études Sci. 134 (2021), 153-501. MR 4349242 · Zbl 1522.11045
[8] C.Breuil, B.Conrad, F.Diamond, and R.Taylor, On the modularity of elliptic curves over \(\mathbf{Q} \): wild 3‐adic exercises, J. Amer. Math. Soc.14 (2001), no. 4, 843-939. MR 1839918 · Zbl 0982.11033
[9] A.Brumer, A.Pacetti, C.Poor, G.Tornaría, J.Voight, and D. S.Yuen, On the paramodularity of typical abelian surfaces, Algebra Number Theory13 (2019), no. 5, 1145-1195. MR 3981316 · Zbl 1466.11019
[10] A.Bucur and K. S.Kedlaya, An application of the effective Sato‐Tate conjecture, Frobenius distributions: Lang‐Trotter and Sato‐Tate conjectures, Contemp. Math., vol. 663, Amer. Math. Soc., Providence, RI, 2016, pp. 45-56. MR 3502938 · Zbl 1417.11103
[11] A.Caraiani and J.Newton, On the modularity of elliptic curves over imaginary quadratic fields, 2023.
[12] A. C.Cojocaru, On the surjectivity of the Galois representations associated to non‐CM elliptic curves, Canad. Math. Bull.48 (2005), no. 1, 16-31. With an appendix by Ernst Kani. MR 2118760 · Zbl 1062.11031
[13] I.Connell, Elliptic curve handbook, 1999. Online notes.
[14] J.Cremona and A.Pacetti, On elliptic curves of prime power conductor over imaginary quadratic fields with class number 1, Proc. London Math. Soc. (3)118 (2019), no. 5, 1245-1276. MR 3946721 · Zbl 1472.11178
[15] S.Cynk, M.Schütt, and D.vanStraten, Hilbert modularity of some double octic Calabi‐Yau threefolds, J. Number Theory210 (2020), 313-332. MR 4057530 · Zbl 1445.14059
[16] A.David, Borne uniforme pour les homothéties dans l’image de Galois associée aux courbes elliptiques, J. Number Theory131 (2011), no. 11, 2175-2191. MR 2825121 · Zbl 1246.11116
[17] L. E.Dickson, Linear groups: with an exposition of the Galois field theory, Dover Publications, Inc., New York, 1958. With an introduction by W. Magnus. MR 0104735 · Zbl 0082.24901
[18] L.Dieulefait, L.Guerberoff, and A.Pacetti, Proving modularity for a given elliptic curve over an imaginary quadratic field, Math. Comp.79 (2010), no. 270, 1145-1170. MR 2600560 · Zbl 1227.11073
[19] L.Dieulefait, A.Pacetti, and M.Schütt, Modularity of the Consani‐Scholten quintic, Doc. Math. 17 (2012), 953-987. With an appendix by José Burgos Gil and Pacetti. MR 3007681 · Zbl 1337.11029
[20] N. D.Elkies, Distribution of supersingular primes, Journées Arithmétiques, 1989 (Luminy, 1989), no. 198-200, 1991, pp. 127-132. MR 1144318 · Zbl 0754.14019
[21] G.Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math.73 (1983), no. 3, 349-366. MR 718935 · Zbl 0588.14026
[22] M.Harris, D.Soudry, and R.Taylor, \(l\)‐adic representations associated to modular forms over imaginary quadratic fields. I. Lifting to \({\rm GSp}_4({\bf Q})\), Invent. Math.112 (1993), no. 2, 377-411. MR 1213108 · Zbl 0797.11047
[23] A.Kraus, Une remarque sur les points de torsion des courbes elliptiques, C. R. Acad. Sci. Paris Sér. I Math.321 (1995), no. 9, 1143-1146. MR 1360773 · Zbl 0862.11037
[24] J. C.Lagarias and A. M.Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic number fields: \(L\)‐functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), Academic Press, London, 1977, pp. 409-464. MR 0447191 · Zbl 0362.12011
[25] S.Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer, New York, 2002. MR 1878556 · Zbl 0984.00001
[26] E.Larson and D.Vaintrob, Determinants of subquotients of Galois representations associated with abelian varieties, J. Inst. Math. Jussieu13 (2014), no. 3, 517-559. With an appendix by Brian Conrad. MR 3211798 · Zbl 1300.11064
[27] E.Larson and D.Vaintrob, On the surjectivity of Galois representations associated to elliptic curves over number fields, Bull. London Math. Soc.46 (2014), no. 1, 197-209. MR 3161774 · Zbl 1292.11067
[28] S.Le Fourn, Surjectivity of Galois representations associated with quadratic \(\mathbb{Q} \)‐curves, Math. Ann.365 (2016), no. 1-2, 173-214. MR 3498908 · Zbl 1342.11059
[29] F.Lemmermeyer, Reciprocity laws, Springer Monographs in Mathematics, Springer, Berlin, 2000. From Euler to Eisenstein. MR 1761696 · Zbl 0949.11002
[30] P.Lemos, Some cases of Serre’s uniformity problem, Math. Z.292 (2019), no. 1-2, 739-762. MR 3968924 · Zbl 1448.11107
[31] The LMFDB Collaboration, The L‐functions and modular forms database, http://www.lmfdb.org, 2022 [Online; accessed 12 April 2023].
[32] D.Lombardo, Bounds for Serre’s open image theorem for elliptic curves over number fields, Algebra Number Theory9 (2015), no. 10, 2347-2395. MR 3437765 · Zbl 1341.11030
[33] D.Masser and G.Wüstholz, Galois properties of division fields of elliptic curves, Bull. London Math. Soc.25 (1993), no. 3, 247-254. MR 1209248 · Zbl 0809.14026
[34] B.Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math.44 (1978), no. 2, 129-162. MR 482230 · Zbl 0386.14009
[35] F.Momose, Isogenies of prime degree over number fields, Compositio Math.97 (1995), no. 3, 329-348. MR 1353278 · Zbl 1044.11582
[36] J.Neukirch, Algebraic number theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer, Berlin, 1999, Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder. MR 1697859 · Zbl 0956.11021
[37] J.Oesterlé, Versions effectives du théoreme de Chebotarev sous l’hypothese de Riemann généralisée, Astérisque61 (1979), 165-167. MR 4432522 · Zbl 0418.12005
[38] B.Peaucelle, Explicit small image theorems for residual modular representations, Int. J. Number Theory18 (2022), no. 5, 1143-1202. MR 4432522 · Zbl 1499.11198
[39] F.Pellarin, Sur une majoration explicite pour un degré d’isogénie liant deux courbes elliptiques, Acta Arith.100 (2001), no. 3, 203-243. MR 1865384 · Zbl 0986.11046
[40] J.‐P.Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math.15 (1972), no. 4, 259-331. MR 387283 · Zbl 0235.14012
[41] J.‐P.Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. (1981), no. 54, 323-401. MR 644559
[42] J.‐P.Serre, Lectures on the Mordell‐Weil theorem, Aspects of Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1997, Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, With a foreword by Brown and Serre. MR 1757192 · Zbl 0863.14013
[43] J.‐P.Serre, Abelian \(l\)‐adic representations and elliptic curves, Research Notes in Mathematics, vol. 7, A K Peters, Ltd., Wellesley, MA, 1998, With the collaboration of Willem Kuyk and John Labute, Revised reprint of the 1968 original. MR 1484415 · Zbl 0902.14016
[44] J.‐P.Serre, Oeuvres/Collected papers. III. 1972-1984, Springer Collected Works in Mathematics, Springer, Heidelberg, 2013. Reprint of the 2003 edition [of the 1986 original MR0926691]. MR 3223094
[45] J.‐P.Serre and J.Tate, Good reduction of abelian varieties, Ann. of Math. (2)88 (1968), 492-517. MR 236190 · Zbl 0172.46101
[46] J. H.Silverman, The arithmetic of elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094 · Zbl 1194.11005
[47] A. V.Sutherland, Computing images of Galois representations attached to elliptic curves, Forum Math. Sigma4 (2016), Paper No. e4, 79. MR 3482279 · Zbl 1361.11040
[48] R.Taylor, \(l\)‐adic representations associated to modular forms over imaginary quadratic fields. II, Invent. Math.116 (1994), no. 1-3, 619-643. MR 1253207 · Zbl 0823.11020
[49] R.Taylor and A.Wiles, Ring‐theoretic properties of certain Hecke algebras, Ann. of Math. (2)141 (1995), no. 3, 553-572. MR 1333036 · Zbl 0823.11030
[50] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 9.7), 2023. https://www.sagemath.org.
[51] L. C.Washington, Elliptic curves, Discrete Mathematics and its Applications (Boca Raton), Chapman & Hall/CRC, Boca Raton, FL, 2003. Number theory and cryptography. MR 1989729 · Zbl 1034.11037
[52] A.Wiles, Modular forms, elliptic curves, and Fermat’s last theorem, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, pp. 243-245. MR 1403925 · Zbl 0864.11029
[53] D.Zywina, On the possible images of the mod \(\ell\) representations associated to elliptic curves over \(\mathbb{Q} \), arXiv:1508.07660, 2015.
[54] D.Zywina, On the surjectivity of \({\rm mod}\,\ell\) representations associated to elliptic curves, Bull. London Math. Soc.54 (2022), no. 6, 2404-2417. MR 4549128 · Zbl 1528.11043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.