×

Conformal Floquet dynamics with a continuous drive protocol. (English) Zbl 1466.81098

Summary: We study the properties of a conformal field theory (CFT) driven periodically with a continuous protocol characterized by a frequency \(\omega_D\). Such a drive, in contrast to its discrete counterparts (such as square pulses or periodic kicks), does not admit exact analytical solution for the evolution operator \(U\). In this work, we develop a Floquet perturbation theory which provides an analytic, albeit perturbative, result for \(U\) that matches exact numerics in the large drive amplitude limit. We find that the drive yields the well-known heating (hyperbolic) and non-heating (elliptic) phases separated by transition lines (parabolic phase boundary). Using this and starting from a primary state of the CFT, we compute the return probability \((P_n)\), equal \((C_n)\) and unequal \((G_n)\) time two-point primary correlators, energy density \((E_n)\), and the \(m^{th}\) Renyi entropy \(( {S}_n^m )\) after \(n\) drive cycles. Our results show that below a crossover stroboscopic time scale \(n_c, P_n, E_n\) and \(G_n\) exhibits universal power law behavior as the transition is approached either from the heating or the non-heating phase; this crossover scale diverges at the transition. We also study the emergent spatial structure of \(C_n, G_n\) and \(E_n\) for the continuous protocol and find emergence of spatial divergences of \(C_n\) and \(G_n\) in both the heating and non-heating phases. We express our results for \({S}_n^m\) and \(C_n\) in terms of conformal blocks and provide analytic expressions for these quantities in several limiting cases. Finally we relate our results to those obtained from exact numerics of a driven lattice model.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T25 Quantum field theory on lattices
62P35 Applications of statistics to physics

References:

[1] Dziarmaga, J., Dynamics of a quantum phase transition and relaxation to a steady state, Adv. Phys., 59, 1063 (2010) · doi:10.1080/00018732.2010.514702
[2] Dutta, A.; Aeppli, G.; Chakrabarti, BK; Divakaran, U.; Rosenbaum, TF; Sen, D., Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information (2015), Cambridge U.K.: Cambridge University Press, Cambridge U.K. · Zbl 1321.82001 · doi:10.1017/CBO9781107706057
[3] Polkovnikov, A.; Sengupta, K.; Silva, A.; Vengalattore, M., Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys., 83, 863 (2011) · doi:10.1103/RevModPhys.83.863
[4] S. Mondal, D. Sen and K. Sengupta, Quantum Quenching, Annealing and Computation, A. Das, A. Chandra and B.K. Chakrabarti eds., Lect. Notes Phys., Vol. 802, Chap. 2, Springer, Berlin, Heidelberg Germany (2010), p. 21. · Zbl 1191.81003
[5] D’Alessio, L.; Polkovnikov, A., Many-body energy localization transition in periodically driven systems, Annals Phys., 333, 19 (2013) · Zbl 1284.82041 · doi:10.1016/j.aop.2013.02.011
[6] Bukov, M.; D’Alessio, L.; Polkovnikov, A., Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to floquet engineering, Adv. Phys., 64, 139 (2015) · doi:10.1080/00018732.2015.1055918
[7] M. Heyl, A. Polkovnikov and S. Kehrein, Dynamical quantum phase transitions in the transverse-field ising model, Phys. Rev. Lett.110 (2013).
[8] Heyl, M., Dynamical quantum phase transitions: a review, Rept. Prog. Phys., 81, 054001 (2018) · doi:10.1088/1361-6633/aaaf9a
[9] Sen, A.; Nandy, S.; Sengupta, K., Entanglement generation in periodically driven integrable systems: Dynamical phase transitions and steady state, Phys. Rev. B, 94, 214301 (2016) · doi:10.1103/PhysRevB.94.214301
[10] Nandy, S.; Sengupta, K.; Sen, A., Periodically driven integrable systems with long-range pair potentials, J. Phys. A, 51, 334002 (2018) · Zbl 1400.82157 · doi:10.1088/1751-8121/aaced6
[11] Das, A., Exotic freezing of response in a quantum many-body system, Phys. Rev. B, 82, 172402 (2010) · doi:10.1103/PhysRevB.82.172402
[12] Bhattacharyya, S.; Das, A.; Dasgupta, S., Transverse ising chain under periodic instantaneous quenches: Dynamical many-body freezing and emergence of slow solitary oscillations, Phys. Rev. B, 86, 054410 (2012) · doi:10.1103/PhysRevB.86.054410
[13] Hegde, SS; Katiyar, H.; Mahesh, TS; Das, A., Freezing a quantum magnet by repeated quantum interference: An experimental realization, Phys. Rev. B, 90, 174407 (2014) · doi:10.1103/PhysRevB.90.174407
[14] Mondal, S.; Pekker, D.; Sengupta, K., Dynamics-induced freezing of strongly correlated ultracold bosons, Europhys. Lett., 100, 60007 (2012) · doi:10.1209/0295-5075/100/60007
[15] Divakaran, U.; Sengupta, K., Dynamic freezing and defect suppression in the tilted one-dimensional bose-hubbard model, Phys. Rev. B, 90, 184303 (2014) · doi:10.1103/PhysRevB.90.184303
[16] B. Mukherjee, A. Sen, D. Sen and K. Sengupta, Dynamics of the vacuum state in a periodically driven Rydberg chain, [arXiv:2005.07715].
[17] Mukherjee, B.; Nandy, S.; Sen, A.; Sen, D.; Sengupta, K., Collapse and revival of quantum many-body scars via floquet engineering, Phys. Rev. B, 101, 245107 (2020) · doi:10.1103/PhysRevB.101.245107
[18] Mukherjee, B.; Sen, A.; Sen, D.; Sengupta, K., Restoring coherence via aperiodic drives in a many-body quantum system, Phys. Rev. B, 102, 014301 (2020) · doi:10.1103/PhysRevB.102.014301
[19] Khemani, V.; Lazarides, A.; Moessner, R.; Sondhi, S., Phase structure of driven quantum systems, Phys. Rev. Lett., 116, 250401 (2016) · doi:10.1103/PhysRevLett.116.250401
[20] Yao, N.; Potter, A.; Potirniche, I-D; Vishwanath, A., Discrete time crystals: Rigidity, criticality, and realizations, Erratum Phys. Rev. Lett., 118, 030401 (2017) · doi:10.1103/PhysRevLett.118.030401
[21] Zhang, J., Observation of a discrete time crystal, Nature, 543, 217 (2017) · doi:10.1038/nature21413
[22] Mukherjee, B.; Sen, A.; Sen, D.; Sengupta, K., Dynamics of the vacuum state in a periodically driven rydberg chain, Phys. Rev. B, 102, 075123 (2020) · doi:10.1103/PhysRevB.102.075123
[23] Lazarides, A.; Das, A.; Moessner, R., Equilibrium states of generic quantum systems subject to periodic driving, Phys. Rev. E, 90, 012110 (2014) · doi:10.1103/PhysRevE.90.012110
[24] Bloch, I.; Dalibard, J.; Zwerger, W., Many-body physics with ultracold gases, Rev. Mod. Phys., 80, 885 (2008) · doi:10.1103/RevModPhys.80.885
[25] Greiner, M.; Mandel, O.; Esslinger, T.; Hänsch, TW; Bloch, I., Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms, Nature, 415, 39 (2002) · doi:10.1038/415039a
[26] Bernien, H., Probing many-body dynamics on a 51-atom quantum simulator, Nature, 551, 579 (2017) · doi:10.1038/nature24622
[27] Shevchenko, SN; Ashhab, S.; Nori, F., Landau-Zener-Stuckelberg Interferometry, Phys. Rept., 492, 1 (2010) · doi:10.1016/j.physrep.2010.03.002
[28] Vogl, M.; Laurell, P.; Barr, AD; Fiete, GA, Flow equation approach to periodically driven quantum systems, Phys. Rev. X, 9, 021037 (2019)
[29] Soori, A.; Sen, D., Nonadiabatic charge pumping by oscillating potentials in one dimension: Results for infinite system and finite ring, Phys. Rev. B, 82, 115432 (2010) · doi:10.1103/PhysRevB.82.115432
[30] Bilitewski, T.; Cooper, NR, Scattering theory for floquet-bloch states, Phys. Rev. A, 91, 033601 (2015) · doi:10.1103/PhysRevA.91.033601
[31] R. Ghosh, B. Mukherjee and K. Sengupta, Floquet perturbation theory for periodically driven weakly interacting fermions, Phys. Rev. B102 (2020) .
[32] X. Wen and J.-Q. Wu, Floquet conformal field theory, arXiv:1805.00031 [INSPIRE].
[33] Fan, R.; Gu, Y.; Vishwanath, A.; Wen, X., Emergent Spatial Structure and Entanglement Localization in Floquet Conformal Field Theory, Phys. Rev. X, 10, 031036 (2020)
[34] Wen, X.; Fan, R.; Vishwanath, A.; Gu, Y., Periodically, quasiperiodically, and randomly driven conformal field theories, Phys. Rev. Res., 3, 023044 (2021) · doi:10.1103/PhysRevResearch.3.023044
[35] Lapierre, B.; Choo, K.; Tiwari, A.; Tauber, C.; Neupert, T.; Chitra, R., Fine structure of heating in a quasiperiodically driven critical quantum system, Phys. Rev. Res., 2, 033461 (2020) · doi:10.1103/PhysRevResearch.2.033461
[36] Han, B.; Wen, X., Classification of SL_2deformed Floquet conformal field theories, Phys. Rev. B, 102, 205125 (2020) · doi:10.1103/PhysRevB.102.205125
[37] Andersen, M.; Nørfjand, F.; Zinner, NT, Real-time correlation function of Floquet conformal fields, Phys. Rev. D, 103, 056005 (2021) · doi:10.1103/PhysRevD.103.056005
[38] Fan, R.; Gu, Y.; Vishwanath, A.; Wen, X., Floquet conformal field theories with generally deformed Hamiltonians, SciPost Phys., 10, 049 (2021) · doi:10.21468/SciPostPhys.10.2.049
[39] B. Lapierre and P. Moosavi, A geometric approach to inhomogeneous Floquet systems, arXiv:2010.11268 [INSPIRE].
[40] Ageev, DS; Bagrov, AA; Iliasov, AA, Deterministic chaos and fractal entropy scaling in Floquet conformal field theories, Phys. Rev. B, 103, L100302 (2021) · doi:10.1103/PhysRevB.103.L100302
[41] Katsura, H., Exact ground state of the sine-square deformed XY spin chain, J. Phys. A, 44, 252001 (2011) · Zbl 1220.82018 · doi:10.1088/1751-8113/44/25/252001
[42] Maruyama, I.; Katsura, H.; Hikihara, T., Sine-square deformation of free fermion systems in one and higher dimensions, Phys. Rev. B, 84, 165132 (2011) · doi:10.1103/PhysRevB.84.165132
[43] Katsura, H., Sine-square deformation of solvable spin chains and conformal field theories, J. Phys. A, 45, 115003 (2012) · Zbl 1241.82021 · doi:10.1088/1751-8113/45/11/115003
[44] K. Okunishi, Sine-square deformation and Möbius quantization of 2D conformal field theory, PTEP2016 (2016) 063A02 [arXiv:1603.09543] [INSPIRE]. · Zbl 1361.81140
[45] Milsted, A.; Vidal, G., Extraction of conformal data in critical quantum spin chains using the koo-saleur formula, Phys. Rev. B, 96, 245105 (2017) · doi:10.1103/PhysRevB.96.245105
[46] Gerry, CC; Vrscay, ER, Dynamics of pulsed SU(1, 1) coherent states, Phys. Rev. A, 39, 5717 (1989) · doi:10.1103/PhysRevA.39.5717
[47] Dattoli, G.; Gallardo, J.; Torre, A., Time-ordering techniques and solution of differential difference equation appearing in quantum optics, J. Math. Phys., 27, 772 (1986) · doi:10.1063/1.527182
[48] Di Franscesco, P.; Mathieu, P.; Senechal, D., Conformal Field Theory (1997), New York U.S.A.: Springer-Verlag, New York U.S.A. · Zbl 0869.53052 · doi:10.1007/978-1-4612-2256-9
[49] Belavin, AA; Polyakov, AM; Zamolodchikov, AB, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B, 241, 333 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[50] Poland, D.; Rychkov, S.; Vichi, A., The conformal bootstrap: Theory, numerical techniques, and applications, Rev. Mod. Phys., 91, 015002 (2019) · doi:10.1103/RevModPhys.91.015002
[51] Hartman, T.; Keller, CA; Stoica, B., Universal Spectrum of 2d Conformal Field Theory in the Large c Limit, JHEP, 09, 118 (2014) · Zbl 1333.81368 · doi:10.1007/JHEP09(2014)118
[52] Fateev, V.; Ribault, S., The Large central charge limit of conformal blocks, JHEP, 02, 001 (2012) · Zbl 1309.81154 · doi:10.1007/JHEP02(2012)001
[53] Hijano, E.; Kraus, P.; Perlmutter, E.; Snively, R., Semiclassical Virasoro blocks from AdS_3gravity, JHEP, 12, 077 (2015) · Zbl 1388.81940
[54] T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
[55] Hijano, E.; Kraus, P.; Perlmutter, E.; Snively, R., Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks, JHEP, 01, 146 (2016) · Zbl 1388.81047 · doi:10.1007/JHEP01(2016)146
[56] P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.2004 (2004) P06002 [ibid. J. Stat. Mech. 2007 (2007) P10004] [ibid. J. Stat. Mech. 2016 (2016) P064003]. · Zbl 1082.82002
[57] A.B. Zamolodchikov, Conformal symmetry in two dimensions: An explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys.96 (1984) 419 [ibid Theor. Math. Phys.73 (1987) 1088].
[58] Berganza, MI; Alcaraz, FC; Sierra, G., Entanglement of excited states in critical spin chains, J. Stat. Mech., 2012, P01016 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.