×

Reconstruction, optimization, and design of heterogeneous materials and media: basic principles, computational algorithms, and applications. (English) Zbl 1484.82058

Summary: Modeling of heterogeneous materials and media is a problem of fundamental importance to a wide variety of phenomena with applications to many disciplines, ranging from condensed and soft materials, fuel cells, alloys, and composite media, to biological materials such as proteins, and even such large-scale structure as field-scale porous media and clusters of galaxies. While several approaches have been developed over the past several decades to address this class of problems, it has become increasingly clear that a most fruitful approach to the problem is by reconstruction: given a certain amount of data for a given medium, how should one develop a model for the medium that not only honors (reproduces) the data, but also provides accurate predictions for those properties of the medium for which no data are available, or are hard to measure. Although deterministic approaches were developed to address the problem, given that the amount of available data is typically limited, the uncertainty in the models is large and, at the same time the deterministic approaches cannot provide any quantitative measure of the uncertainty in the models. Thus, it became clear that the best that one can hope for is developing stochastic methods of reconstruction that not only can generate plausible realizations of the media of interest, but also provide quantitative measures of the uncertainty in the realizations.
The literature on the subject is rich. Some have formulated the problem as one of optimization: one begins with a “guess” for the structure of a medium, and defines an “energy” or “cost” function that represents a quantitative measure of the difference between the data and the corresponding “predictions” of the model. There are many optimization techniques, ranging from simulated annealing and its variants, to Nature-inspired methods, such as the genetic algorithm. Through optimization one varies systematically the initial guess for the morphology of the medium in order to finally identify a structure for the medium that minimizes the energy in a global sense. the cost or energy function may be based on direct measurements of some properties, or based on various two- or three-point statistical correlation functions. A second approach attempts to mimic the physical process that gave rise to the medium. The third approach uses a global cross-correlation function, together with some concepts from graph theory in order to achieve the goal of reconstruction.
This Review describes and discusses the current important methods of reconstruction. After describing the relevant theoretical and computational aspects of reconstruction and the various approaches to the problem, a wide variety of applications are described, and comparison is made between the reconstructed systems and their properties and the existing data. Finally, the problem of developing new classes of materials with specific properties, based on reconstruction techniques is discussed.

MSC:

82D03 Statistical mechanics in condensed matter (general)
82M99 Basic methods in statistical mechanics
82M60 Stochastic analysis in statistical mechanics
62P30 Applications of statistics in engineering and industry; control charts
90Cxx Mathematical programming
49Mxx Numerical methods in optimal control
65Kxx Numerical methods for mathematical programming, optimization and variational techniques
82-02 Research exposition (monographs, survey articles) pertaining to statistical mechanics
Full Text: DOI

References:

[1] Abdollahifard, M. J., Fast multiple-point simulation using a data-driven path and an efficient gradient-based search, Comput. Geosci., 86, 64 (2016)
[2] Adler, P. M.; Jacquin, C. G.; Quiblier, J. A., Flow in simulated porous media, Int. J. Multiph. Flow., 16, 691 (1990) · Zbl 1134.76474
[3] Ahmadi, R.; Masihi, M.; Rasaei, M. R.; Eskandaridalvand, K.; Shahalipour, R., A sensitivity study of FILTERSIM algorithm when applied to DFN modeling, J. Petrol. Explor. Prod. Technol., 4, 153 (2014)
[4] Ahmadi, M. A.; Zendehboudi, S.; Lohi, A.; Elkamel, A.; Chatzis, I., Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization, Geophys. Prospect., 61, 582 (2013)
[5] Akay, B.; Karaboga, D., A modified artificial bee colony algorithm for real-parameter optimization, Inform. Sci., 192, 120 (2012)
[6] Alexander, S. K.; Fieguth, P.; Ioannidis, M. A.; Vrscay, E. R., Hierarchical annealing for synthesis of binary images, Math. Geosci., 41, 357 (2009) · Zbl 1163.86303
[7] Anderson, T. E., An Introduction to Multivariate Statistical Analysis (2003), Wiley: Wiley New York · Zbl 1039.62044
[8] Arjovsky, M.; Chintala, S.; Bottou, L., Wasserstein GAN (2017), arXiv:1701.07875
[9] Arns, C. H.; Knackstedt, M. A.; Mecke, K. R., Reconstructing complex materials via effective grain shapes, Phys. Rev. Lett., 91, Article 215506 pp. (2003)
[10] Arns, C. H.; Knackstedt, M. A.; Pinczewski, W. V.; Mecke, K., Euler-Poincaré characteristics of classes of disordered media, Phys. Rev. E, 63, 31112 (2001)
[11] Arpat, B.; Caers, J., Conditional simulation with patterns, Math. Geol., 39, 177 (2007)
[12] Asadisaghandi, J.; Tahmasebi, P., Comparative evaluation of back-propagation neural network learning algorithms and empirical correlations for prediction of oil PVT properties in Iranian oil fields, J. Petrol. Sci. Eng., 78, 464 (2011)
[13] Bakke, S.; Øren, P.-E., 3-D pore-scale modelling of sandstones and flow simulations in the pore networks, SPE J., 2, 136 (1997)
[14] Baniassadi, M.; Garmestani, H.; Li, D. S.; Ahzi, S.; Khaleel, M.; Sun, X., Three-phase solid oxide fuel cell anode microstructure realization using two-point correlation functions, Acta Mater., 59, 30 (2011)
[15] Baniassadi, M.; Safdari, M.; Garmestani, H.; Ahzi, S.; Geubelle, P. H.; Remond, Y., An optimum approximation of n-point correlation functions of random heterogeneous material systems, J. Chem. Phys., 140, Article 074905 pp. (2014)
[16] Basanta, D.; Miodownik, M. A.; Holm, E. A.; Bentley, P. J., Using genetic algorithms to evolve three-dimensional microstructures from two-dimensional micrographs, Metall. Mater. Trans. A, 36, 1643 (2005)
[17] Bendsøe, M. P.; Kikuchi, M., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 197 (1988) · Zbl 0671.73065
[18] Bentz, D. P.; Martys, N. S., Hydraulic radius and transport in reconstructed model three-dimensional porous media, Transp. Porous Media, 17, 221 (1994)
[19] Berk, N. F., Scattering properties of a model bicontinuous structure with a well defined length scale, Phys. Rev. Lett., 58, 2718 (1987)
[20] Berk, N. F., Scattering properties of the leveled-wave model of random morphologies, Phys. Rev. A, 44, 5069 (1991)
[21] Berthelot, D.; Schumm, T.; Metz, L., BEGAN: boundary equilibrium generative adversarial networks (2017), arXiv:1703.1071
[22] Bertino, L.; Evensen, G.; Wackernagel, H., Combining geostatistics and Kalman filtering for data assimilation in an estuarine system, Inverse Problems, 18, 1 (2002) · Zbl 0998.62096
[23] Besag, J., Spatial interaction and the statistical analysis of lattice systems, J. Royal Stat. Soc. B (Methodological), 36, 192 (1974) · Zbl 0327.60067
[24] Beucher, S., (Dougherty, E. R., Mathematical Morphology in Image Processing (1993), Marcel Dekker: Marcel Dekker New York), 433
[25] Bhuvaneshwari, B.; Rajeswari, A., 3D reconstruction using artificial bee colony based iterative closest point algorithm, J. Intell. Fuzzy Syst., 35, 1721 (2018)
[26] Biswal, B.; Hilfer, R., Microstructure analysis of reconstructed porous media, Physica A, 266, 307 (1999)
[27] Biswal, B.; Manwart, C.; Hilfer, R.; Bakke, S.; Øren, P.-E., Quantitative analysis of experimental and synthetic microstructures for sedimentary rock, Physica A, 273, 452 (1999)
[28] Biswal, B.; Øren, P.-E.; Held, R. J.; Bakke, S.; Hilfer, R., Stochastic multiscale model for carbonate rocks, Phys. Rev. E, 75, Article 061303 pp. (2007)
[29] Black, P.E., 2005. Greedy algorithm. In: Dictionary of Algorithms and Data Structures [online], U.S. National Institute of Standards and Technology, http://www.itl.nist.gov/div897/sqg/dads/HTML/greedyalgo.html.
[30] Bleau, A.; Leon, L. J., Watershed-based segmentation and region merging, Comput. Vis. Image Underst., 77, 317 (2000)
[31] Blumenfeld, R.; Torquato, S., Coarse-graining procedure to generate and analyze heterogeneous materials: Theory, Phys. Rev. E, 48, 4492 (1993)
[32] Bodla, K. K.; Garimella, S. V.; Murthy, J. Y., 3D reconstruction and design of porous media from thin sections, Int. J. Heat Mass Transfer, 73, 250 (2014)
[33] Bonyadi, M. R.; Michalewicz, Z., Particle swarm optimization for single objective continuous space problems: A review, Evol. Comput., 25, 1 (2017)
[34] Bostanabad, R.; Zhang, Y.; Li, X.; Kearney, T.; Brinson, L. C.; Apley, D. W.; Liu, W. K.; Chen, W., Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques, Prog. Mater. Sci., 95, 1 (2018)
[35] Boykov, Y.; Veksler, O.; Zabih, R., Fast approximate energy minimization via graph cuts, IEEE Trans. Pattern Anal. Mach. Intell., 23, 1222 (2001)
[36] Brooke, J.; Bitko, D.; Rosenbaum, T. F.; Aeppli, G., Quantum annealing of a disordered magnet, Science, 284, 779 (1999)
[37] Bryant, A.; Blunt, M., Prediction of relative permeability in simple porous media, Phys. Rev. A, 46, 2004 (1992)
[38] Bryant, S.; Cade, C.; Mellor, D., Permeability prediction from geologic models, Am. Assoc. Petrol. Geol. Bull., 77, 1338 (1993)
[39] Buchniec, S.; Sciazko, A.; Mozdzierz, M.; Brus, G., A novel approach to the optimization of a solid oxide fuel cell nnode using evolutionary algorithms, IEEE Access, 7, 34361 (2019)
[40] Bustillo, J.; Fortineaub, J.; Gautier, G.; Lethiecq, M., Ultrasonic characterization of porous silicon using a genetic algorithm to solve the inverse problem, NDT Int., 62, 93 (2013)
[41] Cade, C. A.; Evans, I. J.; Bryant, L., Analysis of permeability controls: A new approach, Clay Miner., 29, 491 (1994)
[42] Caers, J., Geostatistical reservoir modelling using statistical pattern recognition, J. Petrol. Sci. Eng., 29, 177 (2001)
[43] Caers, J.; Journel, A. G., Stochastic reservoir simulation using neural networks trained on outcrop data, SPE Pap., Article 49026 pp. (1998)
[44] Cahn, J. W., Phase separation by spinodal decomposition in isotropic systems, Phys. Rev. A, 42, 93 (1965)
[45] Calderfield, B., A general construction for parallelizing Metropolis-Hastings algorithms, Proc. Natl. Acad. Sci. USA, 111, 17408 (2014)
[46] Callaghan, P. T., Principles of Nuclear Magnetic Resonance Microscopy (1993), Oxford University Press: Oxford University Press Oxford
[47] Canchumuni, S. W.A.; Emerick, A. A.; Pacheco, M. A.C., Towards a robust parameterization for conditioning facies models using deep variational autoencoders and ensemble smoother, Comput. Geosci., 128, 87 (2019)
[48] Cang, R.; Li, H.; Yao, H.; Jiao, Y.; Ren, Y., Improving direct physical properties prediction of heterogeneous materials from imaging data via convolutional neural network and a morphology-aware generative model, Comput. Mater. Sci., 150, 212 (2018)
[49] Cang, R.; Xu, Y.; Chen, S.; Liu, Y.; Jiao, Y.; Ren, M. Y., Microstructure representation and reconstruction of heterogeneous materials via deep belief network for computational material design, J. Mech. Des., 139, Article 071404 pp. (2017)
[50] C̆apek, P., On the importance of simulated annealing algorithms for stochastic reconstruction constrained by low-order microstructural descriptors, Transp. Porous Media, 125, 59 (2018)
[51] C̆apek, P.; Hejtmánek, V.; Brabec, L.; Zikánová, A.; Koc̆if̆ík, M., Stochastic reconstruction of particulate media using simulated annealing: improving pore connectivity, Transp. Porous Media, 76, 179 (2009)
[52] C̆apek, P.; Veselý, M.; Bernauer, B.; Sysel, P.; Hejtmánek, V.; Koc̆ir̆ík, M.; Brabec, L.; Prokopová, O., Stochastic reconstruction of mixed-matrix membranes and evaluation of effective permeability, Comput. Mater. Sci., 89, 142 (2014)
[53] Chatterjee, S.; Dimitrakopoulos, R.; Mustapha, H., Dimensional reduction of pattern-based simulation using wavelet analysis, Math. Geosci., 44, 343 (2012)
[54] Chen, H.; Flann, N. S.; Watson, D. W., Parallel genetic simulated annealing: A massively parallel SIMD algorithm, IEEE Trans. Parallel Distrib. Syst., 9, 2, 126 (1998)
[55] Chen, M.-y.; Hu, G.; He, W.; Yang, Y.-l.; q. Zhai, J., A reconstruction method for electrical impedance tomography using particle swarm optimization, (Li, K.; Fei, M.; Jia, L.; Irwin, G. W., Life System Modeling and Intelligent Computing, ICSEE 2010, LSMS 2010. Life System Modeling and Intelligent Computing, ICSEE 2010, LSMS 2010, Lecture Notes in Computer Science, vol. 6329 (2010), Springer: Springer Berlin)
[56] Chen, S.; Li, H.; Jiao, Y., Dynamic reconstruction of heterogeneous materials and microstructure evolution, Phys. Rev. E, 92, Article 023301 pp. (2015)
[57] Chen, D.; Teng, Q.; He, X.; Xu, Z.; Li, Z., Stable-phase method for hierarchical annealing in the reconstruction of porous media images, Phys. Rev. E, 89, Article 013305 pp. (2014)
[58] Chen, D.; Torquato, S., Designing disordered hyperuniform two-phase materials with novel physical properties, Acta Mater., 142, 152 (2018)
[59] Cheung, N. J.; Ding, X.-M.; Shen, H.-B., Adaptive firefly algorithm: parameter analysis and its application, PLoS One, 9, Article e112634 pp. (2014)
[60] Chib, S.; Greenberg, E., Understanding the Metropolis-Hastings algorithm, Amer. Statist., 49, 327 (1995)
[61] Chiles, J. P.; Delfiner, P., Geostatistics: Modeling Spatial Uncertainty (1999), Wiley: Wiley New York · Zbl 0922.62098
[62] Christie, M.; Demyanov, V.; Erbas, D., Uncertainty quantification for porous media flows, J. Comput. Phys., 217, 143 (2006) · Zbl 1103.76052
[63] Chugunova, T.; Hu, L., Multiple-point simulations constrained by continuous auxiliary data, Math. Geosci., 40, 133 (2008) · Zbl 1143.86307
[64] Ciobanu, C. V.; Predescu, C., Reconstruction of silicon surfaces: A stochastic optimization problem, Phys. Rev. B, 70, Article 085321 pp. (2004)
[65] Cojan, I.; Fouché, O.; Lopź, S.; Rivoirard, J., Process-based reservoir modelling in the example of meandering channel, (Leuangthong, O.; C. V., C. V. Deutsch, Geostatistics Banff 2004. Geostatistics Banff 2004, Quant. Geol. Geostat., vol. 14 (2004), Springer: Springer Dordrecht), 611
[66] Coles, M. E.; Hazlett, R. D.; Muegge, E. L.; Jones, K. W.; Andrews, B.; Dowd, B.; Siddons, P.; Peskin, A.; Spanne, P.; Soll, W. E., Developments in synchrotron X-ray microtomography with applications to flow in porous media, SPE Res. Eval. Eng., 1, 28 (1998)
[67] Comunian, A.; Renard, P.; Straubhaar, J., 3D multiple-point statistics simulation using 2D training images, Comput. Geosci., 40, 49 (2012)
[68] Cook, W.; Cunningham, W.; Pulleyblank, W.; Schrijver, A., Combinatorial Optimization (1998), Wiley: Wiley New York · Zbl 0909.90227
[69] Cotter, S. L.; Roberts, G. O.; Stuart, A. M.; White, D., MCMC methods for functions: modifying old algorithms to make them faster, Statist. Sci., 28, 424 (2013) · Zbl 1331.62132
[70] Cousty, J.; Bertrand, G.; Najman, L.; Couprie, M., IEEE Trans. Pattern Anal. Mach. Intell., 31, 1362 (2009)
[71] Crossley, A. P.; Schwartz, L. M.; Banavar, J. R., Image-based models of porous media: Application to vycor glass and carbonate rocks, Appl. Phys. Lett., 59, 3553 (1991)
[72] Cule, D.; Torquato, S., Enerating random media from limited microstructural information via stochastic optimization, J. Appl. Phys., 86, 3428 (1999)
[73] DalíAlba, V.; Renard, P.; Straubhaar, J.; Issautier, B.; Duvail, C.; Caballero, Y., 3D multiple-point statistics simulations of the roussillon continental pliocene aquifer using DeeSse, Hydrol. Earth Syst. Sci., 24, 5013 (2020)
[74] Daly, C., Higher order models using entropy, Markov random fields and sequential simulation, (Leuangthong, O.; Deutsch, C. V., Geostatistics (2004), Springer: Springer Berlin), 215 · Zbl 1366.62159
[75] Daly, C.; Knudby, C., Multipoint statistics in reservoir modelling and in computer vision, (Petroleum Geostatistics 2007 (2007))
[76] (Das, A.; Chakrabarti, B. K., Quantum Annealing and Related Optimization Methods. Quantum Annealing and Related Optimization Methods, Lecture Notes in Physics, vol. 679 (2005), Springer: Springer Heidelberg) · Zbl 1130.81020
[77] Das, A.; Chakrabarti, B. K., Quantum annealing and analog quantum computation, Rev. Modern Phys., 80, 1061 (2008) · Zbl 1205.81058
[78] Das, R.; Prasad, D. K., Prediction of porosity and thermal diffusivity in a porous fin using differential evolution algorithm, Swarm Evol. Comput., 23, 27 (2015)
[79] Das, R.; Singh, K.; Akay, B.; Gogol, T. K., Application of artificial bee colony algorithm for maximizing heat transfer in a perforated fin, J. Process Mech. Eng., 232, 38 (2018)
[80] Dashtian, H.; Jafari, G. R.; Koohi Lai, Z.; Masihi, M.; Sahimi, M., Analysis of cross correlations between well logs of hydrocarbon reservoirs, Transp. Porous Media, 90, 445 (2011)
[81] Dashtian, H.; Jafari, G. R.; Sahimi, M.; Masihi, M., Scaling, multifractality, and long-range correlations in well log data of large-scale porous media, Physica A, 390, 2096 (2011)
[82] Dashtian, H.; Yang, Y.; Sahimi, M., Non-universality of the archie exponent due to multifractality of the resistivity well logs, Geophys. Res. Lett., 42, 10655 (2015)
[83] Datta-Gupta, A.; Vasco, D. W.; Long, J. C.S.; D’Onfron, P. S.; Rizer, W. D., Detailed characterization of a fractured limestone formation by use of stochastic inverse approaches, SPE Form. Eval., 10, 133 (1995)
[84] Davey Mauldon, A.; Karasaki, K.; Martel, S. J.; Long, J. C.S.; Landsfield, M.; Mensch, A., An inverse technique for developing models for fluid flow in fracture systems using simulated annealing, Water Resour. Res., 29, 3775 (1993)
[85] Day-Lewis, F. D.; Hsieh, P. A.; Gorelick, S. M., Identifying fracture-zone geometry using simulated annealing and hydraulic-connection data, Water Resour. Res., 36, 1707 (2004)
[86] Deutsch, C. V.; Wang, L., Hierarchical object-based stochastic modeling of fluvial reservoirs, Math. Geol., 28, 857 (1996)
[87] Dimitrakopoulos, R.; Mustapha, H.; Gloaguen, E., High-order statistics of spatial random fields: Exploring spatial cumulants for modelling complex, non-Gaussian and non-linear phenomena, Math. Geosci., 42, 65 (2010) · Zbl 1184.86012
[88] Ding, K.; Teng, Q.; Wang, Z.; He, X.; Feng, J., Improved multipoint statistics method for reconstructing three-dimensional porous media from a two-dimensional image via porosity matching, Phys. Rev. E, 97, Article 063304 pp. (2018)
[89] Diógenes, A. N.; dos Santos, L. O.; Fernandes, C. P.; Moreira, A. C.; Apolloni, C. R., Porous media microstructure reconstruction using pixel-based and object-based simulated annealing-comparison with other reconstruction methods, Revista Engenharia Térmica, 8, 35 (2009)
[90] Du, Y.; Chen, J.; Zhang, T., Reconstruction of three-dimensional porous media using deep transfer learning, Geofluids, 2020, Article 6641642 pp. (2020), Article
[91] Dueck, G., New optimization heuristics: the great deluge algorithm and the record-to-record travel, J. Comput. Phys., 104, 86 (1993) · Zbl 0773.65042
[92] Earl, D. J.; Deem, M. W., Parallel tempering: Theory, applications, and new perspectives, Phys. Chem. Chem. Phys., 7, 3910 (2005)
[93] Ebrahimi, F.; Sahimi, M., Multiresolution wavelet coarsening and analysis of transport in heterogeneous media, Physica A, 316, 160 (2002) · Zbl 1001.82558
[94] Ebrahimi, F.; Sahimi, M., Multiresolution wavelet scale up of unstable miscible displacements in flow through heterogeneous porous media, Transp. Porous Media, 57, 75 (2004)
[95] Efendiev, Y.; Datta-Gupta, A.; Ginting, V.; Ma, X.; Mallick, B., An efficient two-stage Markov chain Monte Carlo method for dynamic data integration, Water Resour. Res., 41, W12423 (2005)
[96] Efendiev, Y.; Hou, T.; Luo, W., Preconditioning Markov chain Monte Carlo simulations using coarse-scale models, SIAM J. Sci. Comput., 28, 776 (2006) · Zbl 1111.65003
[97] Emery, X., Properties and limitations of sequential indicator simulation, Stoch. Environ. Res. Risk Assess., 18, 414 (2004) · Zbl 1056.62122
[98] Eschricht, N.; Hoinkis, E.; Mädler, F.; Schubert-Bischoff, P.; Röhl-Kuhn, B., Knowledge-based reconstruction of random porous media, J. Colloid Interface Sci., 291, 201 (2005)
[99] Eskandari, K.; Srinivasan, S., Reservoir modeling of complex geological systems - A multiple-point perspective, J. Can. Petrol. Technol., 49, 59 (2010)
[100] Evensen, G., Sequential data assimilation with nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, C5, 143 (1994)
[101] Falcioni, M.; Deem, M. W., A biased Monte Carlo scheme for zeolite structure solution, J. Chem. Phys., 110, 1754 (1999)
[102] Fara, H. D.; Scheidegger, A. E., Statistical geometry of porous media, J. Geophys. Res., 66, 3279 (1961)
[103] Favre-Nicolin, V.; Cerný, R., FOX, ‘free objects for crystallography’: A modular approach to ab initio structure determination from powder diffraction, J. Appl. Phys., 35, 734 (2002)
[104] Feng, J.; He, X.; Teng, Q.; Ren, C.; Chen, H.; Li, Y., Reconstruction of porous media from extremely limited information using conditional generative adversarial networks, Phys. Rev. E, 100, Article 033308 pp. (2019)
[105] Feng, J.; Teng, Q.; He, X.; Wu, X., Accelerating multi-point statistics reconstruction method for porous media via deep learning, Acta Mater., 159, 296 (2018)
[106] Feng, J.; Teng, Q.; Li, B.; He, H.; Li, Y., An end-to-end three-dimensional reconstruction framework of porous media from a single two-dimensional image based on deep learning, Comput. Methods Appl. Mech. Eng., 368, Article 113043 pp. (2020) · Zbl 1506.74105
[107] Finnila, A. B.; Gomez, M. A.; Sebenik, C.; Stenson, C.; Doll, J. D., Quantum annealing: A new method for minimizing multidimensional functions, Chem. Phys. Lett., 219, 343 (1994)
[108] Fokina, D.; Muravleva, E.; Ovchinnikov, G.; Oseledets, I., Microstructure synthesis using style-based generative adversarial networks, Phys. Rev. E, 101, Article 043308 pp. (2020)
[109] Ford, L. R.; Fulkerson, D. R., Flows in Networks (1962), Princeton University Press: Princeton University Press Princeton · Zbl 0106.34802
[110] Frazin, R. A.; Butala, M. D.; Kemball, A.; Kamalabadi, F., Time-dependent reconstruction of non-stationary objects with tomographic or interferometric measurements, Astrophys. J., 635, L197 (2005)
[111] Freitas, D.; Lopes, L. G.; Morgado-Dias, F., Particle swarm optimization: A historical review up to the current developments, Entropy (Basel), 22, 362 (2020)
[112] Friedlich, R.; Peinke, J.; Sahimi, M.; Rahimi Tabar, M. R., Approaching complexity by stochastic methods: From biological systems to turbulence, Phys. Rep., 506, 87 (2011)
[113] Fukami, K.; Fukagata, K.; Taira, K., Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows, J. Fluid Mech. (2021) · Zbl 1461.76306
[114] Gálvez, A.; Cobo, A.; Iglesias, A., Particle swarm optimization for Bézier surface reconstruction, (Bubak, M.; van Albada, G. D.; Dongarra, J.; Sloot, P. M.A., Computational Science - ICCS 2008. ICCS 2008. Computational Science - ICCS 2008. ICCS 2008, Lecture Notes in Computer Science, vol. 5102 (2008), Springer: Springer Heidelberg)
[115] Gálvez, A.; Iglesias, A., Particle swarm optimization for non-uniform rational B-spline surface reconstruction from clouds of 3D data points, Inf. Sci., 192, 174 (2012)
[116] Gálvez, A., Iglesias, A., 2018. Modified memetic self-adaptive firefly algorithm for 2D fractal image reconstruction. In: IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), pp. 165.
[117] Gayon-Lombardo, A.; Mosser, L.; Cooper, S. J., Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries, Npj Comput. Mater., 6, 82 (2020)
[118] Gazonas, G. A.; Weile, D. S.; Wildman, R.; Mohan, A., Genetic algorithm optimization of phononic bandgap structures, Int. J. Solids Struct., 43, 5851 (2006) · Zbl 1120.74701
[119] Ge, Y.; Liu, Z.; Liu, W., Multi-objective genetic optimization of the heat transfer for tube inserted with porous media, Int. J. Heat Mass Transfer, 101, 981 (2016)
[120] Geman, S.; Geman, D., Stochastic relaxation, gibbs distributions and the bayesian restoration of images, IEEE Trans. Patt. Anal. Mach. Intell., 6, 721 (1984) · Zbl 0573.62030
[121] Gerke, K. M.; Karsanina, M. V., Improving stochastic reconstructions by weighting correlation functions in an objective function, Euphys. Lett., 111, 56002 (2015)
[122] Gerke, K. M.; Karsanina, M. V.; Mallants, D., Universal stochastic multiscale image fusion: An example application for shale rock, Sci. Rep., 5, 15880 (2015)
[123] Gerke, K. M.; Karsanina, M. V.; Vasilyev, R. V.; Mallants, D., Improving pattern reconstruction using directional correlation functions, Euphys. Lett., 106, 66002 (2014)
[124] Giona, M.; Adrover, A., Closed-form solution for the reconstruction problem in porous media, AIChE J., 42, 1407 (1996)
[125] Gloaguen, E.; Dimitrakopoulos, R., Two-dimensional conditional simulations based on the wavelet decomposition of training images, Math. Geosci., 41, 679 (2009) · Zbl 1174.94003
[126] Goldberg, A. V.; Tarjan, R. E., A new approach to the maximum-flow problem, J. ACM, 35, 921 (1988) · Zbl 0661.90031
[127] Goodfellow, I., NIPS 2016 tutorial: generative adversarial networks (2017), arXiv:1701.00160
[128] Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y., Generative adversarial nets, (Advances in Neural Information Processing Systems (2014)), 2672, http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
[129] Goovaerts, P., Geostatistics for Natural Resources Evaluation (1997), Oxford University Press: Oxford University Press London
[130] Graham-Brady, L.; Xu, X. F., Stochastic morphological modeling of random multiphase materials, J. Appl. Mech., 75, Article 061001 pp. (2008)
[131] Greening, D. R., Parallel simulated annealing techniques, Physica D, 42, 293 (1990)
[132] Greig, D. M.; Porteous, B. T.; Seheult, A. H., Exact maximum a posteriori estimation for binary images, J. Roy. Statist. Soc. B, 51, 271 (1989)
[133] Grigoriu, M., Random field models for two-phase microstructures, J. Appl. Phys., 94, 3762 (2003)
[134] Guardiano, F.; Srivastava, M., Multivariate geostatistics: beyond bivariate moments, (Geostatistics - Troia (1993), Kluwer Academic: Kluwer Academic Dordrecht), 133
[135] Guo, E.-Y.; Chawla, N.; Jing, T.; Torquato, S.; Jiao, Y., Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method, Mater. Charact., 89, 33 (2014)
[136] Hajizadeh, A.; Safekordi, A.; Farhadpour, F. A., A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images, Adv. Water Resour., 34, 1256 (2011)
[137] Haldorsen, H. H.; Damsleth, E., Stochastic modeling, J. Pet. Technol., 42, 404 (1990)
[138] Hamacher, K., Adaptation in stochastic tunneling global optimization of complex potential energy landscapes, Europhys. Lett., 74, 944 (2006)
[139] Hamzehpour, H.; Rasaei, M. R.; Sahimi, M., Development of optimal models of porous media by combining static and dynamic data: The permeability and porosity distributions, Phys. Rev. E, 75, Article 056311 pp. (2007)
[140] Hamzehpour, H.; Sahimi, M., Generation of long-range correlations in large systems as an optimization problem, Phys. Rev. E, 73, Article 056121 pp. (2006)
[141] Hamzehpour, H.; Sahimi, M., Development of optimal models of porous media by combining static and dynamic data: The porosity distribution, Phys. Rev. E, 74, Article 026308 pp. (2006)
[142] Handels, H.; Ehrhardt, J., Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives, Methods Inf. Med., 48, 11 (2009)
[143] Hansen, T. M.; Cordua, K. S.; Mosegaard, K., Inverse problems with non-trivial priors: efficient solution through sequential gibbs sampling, Comput. Geosci., 16, 593 (2012)
[144] Hansmann, U. H.E., Parallel tempering algorithm for conformational studies of biological molecules, Chem. Phys. Lett., 281, 140 (1997)
[145] Hasanabadi, A.; Baniassadi, M.; Abrinia, K.; Safdari, M.; Garmestani, H., 3D microstructural reconstruction of heterogeneous materials from 2D cross sections: A modified phase-recovery algorithm, Comput. Mater. Sci., 111, 107 (2016)
[146] Hassanpour, M. M.; Pyrcz, M. J.; Deutsch, C. V., Improved geostatistical models of inclined heterolithic strata for McMurray formation, alberta, Canada, Am. Assoc. Petrol. Geol. Bull., 97, 1209 (2013)
[147] Havelka, J.; Kuc̆erová, A.; Sýkora, J., Compression and reconstruction of random microstructures using accelerated lineal path function, Comput. Mater. Sci., 122, 102 (2016)
[148] Hazlett, R. D., Statistical characterization and stochastic modeling of pore networks in relation to fluid flow, Math. Geol., 29, 801 (1997)
[149] Heim, B.; Rønnow, T. F.; Isakov, S. V.; Troyer, M., Quantum versus classical annealing of ising spin glasses, Science, 348, 215 (2015) · Zbl 1355.81182
[150] Holden, L.; Hauge, R.; Skare, Ø.; Skorstad, A., Modeling of fluvial reservoirs with object models, Math. Geol., 30, 473 (1998)
[151] Holt, R. M.; Fjaer, E.; Torsaeter, O.; Bakke, S., Petrophysical laboratory measurements for basin and reservoir evaluation, Mar. Pet. Geol., 13, 383 (1996)
[152] Honarkhah, M.; Caers, J., Stochastic simulation of patterns using distance-based pattern modeling, Math. Geosci., 42, 487 (2010) · Zbl 1194.86038
[153] Honarkhah, M.; Caers, J., Direct pattern-based simulation of non-stationary geostatistical models, Math. Geosci., 44, 651 (2012)
[154] Hong, S.; Ortiz, J. M.; Deutsch, C. V., Multivariate density estimation as an alternative to probabilistic combination schemes for data integration, (Ortiz, J. M.; Emery, X., Geostats 2008, Proceedings of the Eighth International Geostatistics Congress, Vol. 1 (2008), Gecamin: Gecamin Santiago, Chile), 197
[155] Hopper, R. W., Stochastic theory of scattering from idealized spinodal structures. II. Scattering in general and for the basic late stage model, J. Non-Cryst. Solids, 70, 111 (1985)
[156] Ingber, L., Adaptive simulated annealing (ASA): Lessons learned, Control Cybernet., 25, 33 (1996) · Zbl 0860.93035
[157] Izadi, H.; Baniassadi, M.; Hasanabadi, A.; Mehrgini, B.; Memarian, H.; Soltanian-Zadehd, H.; Abrinia, K., Application of full set of two point correlation functions from a pair of 2D cut sections for 3D porous media reconstruction, J. Petrol. Sci. Eng., 149, 789 (2017)
[158] Jafari, G. R.; Fazeli, S. M.; Ghasemi, F.; Vaez Allaei, M.; Iraji zad, A.; Kave, G., Stochastic analysis and regeneration of rough surfaces, Phys. Rev. Lett., 91, Article 226101 pp. (2003)
[159] Janssens, N.; Huysmans, M.; Swennen, R., Computed tomography 3D super-resolution with generative adversarial neural networks: Implications on unsaturated and two-phase fluid flow, Materials, 13, 1397 (2020)
[160] Jasti, J. K.; Feldkamp, L.; Jesion, G., Microscopic imaging of porous media with X-ray computer tomography, SPE Formation Eval., 8, 3 (1993)
[161] Jiang, Z.; Chen, W.; Burkhart, C., Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization, J. Microsc., 252, 135 (2013)
[162] Jiao, Y.; Padilla, E.; Chawla, N., Modeling and predicting microstructure evolution in lead/tin alloy via correlation functions and stochastic material reconstruction, Acta Mater., 61, 3370 (2013)
[163] Jiao, Y.; Stillinger, F. H.; Torquato, S., Modeling heterogeneous materials via two-point correlation functions: Basic principles, Phys. Rev. E, 76, Article 031110 pp. (2007)
[164] Jiao, Y.; Stillinger, F. H.; Torquato, S., Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications, Phys. Rev. E, 77, Article 031135 pp. (2008)
[165] Jiao, Y.; Stillinger, F. H.; Torquato, S., A superior descriptor of random textures and its predictive capacity, Proc. Natl. Acad. Sci. USA, 106, 17634 (2009)
[166] Jin, G.; Patzek, T. W.; Silin, D. B., Physics-based reconstruction of sedimentary rocks, SPE, 83587 (2003)
[167] Johnson, M. E., Multivariate Statistical Simulation (1987), Wiley: Wiley Hoboken · Zbl 0604.62056
[168] Jordan, D.L., Goggin, D.J., An application of categorial indicator geostatistics for facies modeling in sand-rich turbidite systems, SPE paper 30603 (1995).
[169] Jorreto-Zaguirre, S.; Dowd, P. A.; Pardo-Igúzquiza, E.; Pulido-Bosch1, A.; Sánchez-Martos, F., Stochastic simulation of the spatial heterogeneity of deltaic hydrofacies accounting for the uncertainty of facies proportions, Front. Earth Sci. (2020), https://www.frontiersin.org/articles/10.3389/feart.2020.563122/full
[170] Joshi, M. Y., A Class of Stochastic Models for Porous Media (1974), Department of Petroleum Engineering, University of Kansas, (Ph.D. thesis)
[171] Journel, A. G., Geostatistics: roadblocks and challenges, (Soares, A., Geostatistics - Troia, Vol. 1 (1992), Kluwer Academic: Kluwer Academic Dordrecht), 213
[172] Ju, Y.; Huang, Y.; Zheng, J.; Qian, X.; Xie, H.; Zhao, X., Multi-thread parallel algorithm for reconstructing 3D large-scale porous structures, Comput. Geosci., 101, 10 (2017)
[173] Ju, Y.; Zheng, J.; Epstein, M.; Sudak, L.; Wang, J.; Zhao, X., 3D numerical reconstruction of well-connected porous structure of rock using fractal algorithms, Comput. Methods Appl. Mech. Engrg., 279, 212 (2014) · Zbl 1423.76426
[174] Kadowaki, T.; Nishimori, H., Quantum annealing in the transverse ising model, Phys. Rev. E, 58, 5355 (1998)
[175] Kalman, R. E., A new approach to linear filtering and prediction problems, J. Basic Eng., 82, 35 (1960)
[176] Kamrava, S.; Sahimi, M.; Tahmasebi, P., Quantifying accuracy of stochastic methods of reconstructing complex materials by deep learning, Phys. Rev. E, 101, Article 043301 pp. (2020)
[177] Karaboga, D., An Idea Based on Honey Bee Swarm for Numerical OptimizationTechnical Report-TR06 (2005), https://pdfs.semanticscholar.org/015d/f4d97ed1f541752842c49d12e429a785460b.pdf
[178] Karaboga, D.; Basturk, B., A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm, J. Global Optim., 39, 459 (2007) · Zbl 1149.90186
[179] Karras, T.; Laine, S.; Aila, T., A style-based generator architecture for generative adversarial networks (2019), arXiv:1812.04948v3 [cs.NE]
[180] Karsanina, M. V.; Gerke, K. M., Hierarchical optimization: fast and robust multiscale stochastic reconstructions with rescaled correlation functions, Phys. Rev. Lett., 121, Article 265501 pp. (2018)
[181] Karsanina, M. V.; Gerke, K. M.; Skvortsova, E. B.; Mallants, D., Universal spatial correlation functions for describing and reconstructing soil microstructure, PLoS One, 10, Article e0126515 pp. (2015)
[182] Keehm, Y., Computational Rock Physics: Transport Properties in Porous Media and Applications, Stanford Rock Physics & Borehole Geophysics Project (2003), Stanford University
[183] Kennedy, J.; Eberhart, R., Particle swarm optimization, Proc. IEEE Int. Conf. Neural Netw., IV, 1942 (1995)
[184] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P., Optimization by simulated annealing, Science, 220, 671 (1983) · Zbl 1225.90162
[185] Klise, K. A.; Weissmann, G. S.; McKenna, S. A.; Nichols, E. M.; Frechette, J. D.; Wawrzyniec, T. F.; Tidwell, V. C., Exploring solute transport and streamline connectivity using lidar-based outcrop images and geostatistical representations of heterogeneity, Water Resour. Res., 45, W05413 (2009)
[186] Knackstedt, M. A.; Roberts, A. P., Morphology and macroscopic properties of conducting polymer blends, Macromolecules, 29, 1369 (1996)
[187] Knoll, F.; Murrell, T.; Sriram, A.; Yakubova, N.; Zbontar, J.; Rabbat, M.; Defazio, A.; Muckley, M. J.; Sodickson, D. K.; Zitnick, C. L.; Recht, M. P., Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastmri challenge, Mag. Reson. Med., 84, 3054 (2020)
[188] Kofke, D. A., On the acceptance probability of replica-exchange Monte Carlo trials, J. Chem. Phys., 117, 6911 (2002)
[189] Kofke, D. A., Comment on the incomplete beta function law for parallel tempering sampling of classical canonical systems, J. Chem. Phys., 121, 1167 (2004)
[190] Kolbjørnsen, O.; Stien, M.; Kjønsberg, H.; Fjellvoll, B.; Abrahamsen, P., Using multiple grids in Markov mesh facies modeling, Math. Geosci., 46, 205 (2014) · Zbl 1322.86012
[191] Kone, A.; Kofke, D. A., Selection of temperature intervals for parallel-tempering simulations, J. Chem. Phys., 122, Article 206101 pp. (2005)
[192] Koutsourelakis, P. S.; Deodatis, G., Simulation of multidimensional binary random fields with application to modeling of two-phase random media, J. Eng. Mech., 619 (2006)
[193] Krige, D. G., A statistical approachto some basic mine valuation problems on the witwatersrand, J. Chem. Metall. Min. Soc. South Africa, 52, 119 (1951)
[194] Kumar, H.; Briant, C. L.; Curtin, W. A., Using microstructure reconstruction to model mechanical behavior in complex microstructures, Mech. Mater., 38, 818 (2006)
[195] Kumar, N. C.; Matous̆, K.; Geubelle, P. H., Reconstruction of periodic unit cells of multimodal random particulate composites using genetic algorithms, Comput. Mater. Sci., 42, 352 (2008)
[196] Kumar, A.; Sundararaghavan, V.; DeGraef, M.; Nguyen, L., A Markov random field approach for microstructure synthesis, Model. Simul. Mater. Sci. Eng., 24, Article 035015 pp. (2016)
[197] Kwatra, V.; Schödl, A.; Essa, I.; Turk, G.; Bobick, A., Graphcut textures: image and video synthesis using graph cuts, ACM Trans. Graph., 22, 277 (2003)
[198] Lantuéjoul, C., Geostatistical Simulation: Models and Algorithms, 1 (2002), Springer: Springer Berlin · Zbl 0990.86007
[199] Latief, F. D.E.; Biswal, B.; Fauzi, U.; Hilfer, R., Continuum reconstruction of the pore scale microstructure for fontainebleau sandstone, Physica A, 389, 1607 (2010)
[200] Lee, H. K.H.; Higdon, D. M.; Bi, Z.; Ferreira, M. A.R.; West, M., Markov random field models for high-dimensional parameters in simulations of fluid flow in porous media, Technometrics, 44, 230 (2002)
[201] Lee, H.; Huang, C.; Yune, S.; Tajmir, S. H.; Kim, M.; Do, S., Machine friendly machine learning: interpretation of computed tomography without image reconstruction, Sci. Rep., 9, 15540 (2019)
[202] Lee, S.; Min, B.; Wheeler, M. F., Optimal design of hydraulic fracturing in porous media using the phase field fracture model coupled with genetic algorithm, Comput. Geosci., 22, 833 (2018) · Zbl 1405.76055
[203] Lemmens, L.; Rogiers, B.; Jacques, D.; Huysmans, M.; Swennen, R.; Urai, J. L.; Desbois, D.; Laloy, E., Nested multiresolution hierarchical simulated annealing algorithm for porous media reconstruction, Phys. Rev. E, 100, Article 053316 pp. (2019)
[204] Lemos, R. T.; Sansó, B., A spatio-temporal model for mean, anomaly, and trend fields of north atlantic sea surface temperature, J. Am. Statist. Assoc., 104, 5 (2009)
[205] Levitz, P., Off-lattice reconstruction of porous media: critical evaluation, geometrical confinement and molecular transport, Adv. Colloid Interface Sci., 76-77, 71 (1998)
[206] Li, Y.; Mascagni, M.; Gorin, A., A decentralized parallel implementation for parallel tempering algorithm, Parallel Comput., 35, 269 (2009)
[207] Li, H.; Qin, S. J.; Tsotsis, T. T.; Sahimi, M., Computer simulation of gas generation and transport in landfills. VI. Dynamic updating of the model using the ensemble Kalman filter, Chem. Eng. Sci., 74, 69 (2012)
[208] Li, H.; Sanchez, R.; Qin, S. J.; Kavak, H. I.; Webster, I. A.; Tsotsis, T. T.; Sahimi, M., Computer simulation of gas generation and transport in landfills. v: Use of artificial neural network and genetic algorithm for short- and long-term forecasting and planning, Chem. Eng. Sci., 66, 2646 (2011)
[209] Li, H.; Tsotsis, T. T.; Sahimi, M.; Qin, S. J., Ensembles-based and GA-based optimization for landfill gas production, AIChE J., 60, 2063 (2014)
[210] Li, H.; Wan, Z., Particle swarm optimization for solving medical image reconstruction ill-conditioned problems, J. Phys.: Conf. Ser., 1578, Article 012058 pp. (2020)
[211] Liang, Z. R.; Fernandes, C. P.; Magnani, F. S.; Philippi, P. C., A reconstruction technique for three-dimensional porous media using image analysis and fourier transforms, J. Petrol. Sci. Eng., 21, 273 (1998)
[212] Lin, C.; Cohen, M. H., Quantitative methods for microgeometric modeling, J. Appl. Phys., 53, 4152 (1982)
[213] Lin, W.; Li, X.; Yang, Z.; Wang, J.; Xiong, S.; Luo, Y.; Wu, G., Construction of dual pore 3-D digital cores with a hybrid method combined with physical experiment method and numerical reconstruction method, Transp. Porous Media, 120, 227 (2017)
[214] Lin, W.; Li, X.; Yang, Z.; Xiong, S., Modeling of 3D rock porous media by combining x-ray CT and Markov chain Monte Carlo, J. Energy Resour. Technol., 142, Article 013001 pp. (2020)
[215] Liu, Y., Using the snesim program for multiple-point statistical simulation, Comput. Geosci., 32, 1544 (2006)
[216] Liu, Z.; Mu, C. M., Applying COSISIM model to study the permeability of porous media, J. Coal Sci. Eng., 17, 128 (2011)
[217] Liu, X.; Sun, J.; Wang, H., Reconstruction of 3-D digital cores using a hybrid method, Appl. Geophys., 6, 105 (2009)
[218] Liu, S.; Zhong, Z.; Takbiri-Borujeni, A.; Kazemi, M.; Fu, Q.; Yang, Y., A case study on homogeneous and heterogeneous reservoir porous media reconstruction by using generative adversarial networks, Energy Procedia, 158, 6164 (2019)
[219] Long, J. C.S.; Karasaki, K.; Davey, A.; Peterson, J.; Landsfeld, M.; Kemeny, J.; Martel, S., Inverse approach to the construction of fracture hydrology models conditioned by geophysical data. An example from the validation exercises at the stripa mine, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 28, 121 (1991)
[220] Luus, R.; Jaakola, T. H.I., Optimization by direct search and systematic reduction of the size of search region, AIChE J., 19, 760 (1973)
[221] Lyster, S., Deutsch, C.V., 2008. MPS simulation in a Gibbs sampler algorithm. In: Proceedings of the 8th International Geostatistics Congress, Santiago, Chile.
[222] Ma, Z.; Torquato, S., Precise algorithms to compute surface correlation functions of two-phase heterogeneous media and their applications, Phys. Rev. E, 98, Article 013307 pp. (2018)
[223] Maalal, O.; Prat, M.; R. Peinador, R.; Lasseux, D., Determination of the throat size distribution of a porous medium as an inverse optimization problem combining pore network modeling and genetic and hill climbing algorithms, Phys. Rev. E, 103, Article 023303 pp. (2021)
[224] Makrodimitris, K.; Papadopoulos, G. K.; Philippopoulos, C.; Theodorou, D. N., Parallel tempering method for reconstructing isotropic and anisotropic porous media, J. Chem. Phys., 117, 5876 (2002)
[225] Malmir, H.; Sahimi, M.; Jiao, Y., Higher-order correlation functions in disordered media: Computational algorithms and application to two-phase heterogeneous materials, Phys. Rev. E, 98, Article 063317 pp. (2018)
[226] Manchuk, J. G.; Deutsch, C. V., A flexible sequential Gaussian simulation program: USGSIM, Comput. Geosci., 41, 208 (2012)
[227] Manwart, C.; Hilfer, R., Reconstruction of random media using Monte Carlo methods, Phys. Rev. E, 59, 5596 (1999)
[228] Manwart, C.; Torquato, S.; Hilfer, R., Stochastic reconstruction of sandstones, Phys. Rev. E, 62, 893 (2000)
[229] Mariethoz, G.; Kelly, B. F.J., Modeling complex geological structures with elementary training images and transform-invariant distances, Water Resour. Res., 47, W07527 (2011)
[230] Mariethoz, G.; Renard, P., Reconstruction of incomplete data sets or images using direct sampling, Math. Geosci., 42, 245 (2010) · Zbl 1184.86015
[231] Mariethoz, G.; Renard, P.; Straubhaar, J., The direct sampling method to perform multiple-point geostatistical simulations, Water Resour. Res., 46, W11536 (2010)
[232] Massa, A.; Pastorino, M.; Randazzo, A., Reconstruction of two-dimensional buried objects by a differential evolution method, Inverse Problems, 20, S135 (2004) · Zbl 1077.78501
[233] Matheron, G., Principles of geostatistics, Econ. Geol., 58, 1246 (1963)
[234] Matheron, G., Composition of permeabilities in heterogeneous porous media. Schwydler method and weighting rules, Rev. Inst. Fr. Petrole, 22, 443 (1967)
[235] McHargue, T.; Pyrcz, M. J.; Sullivan, M. D.; Clark, J. D.; Fildani, A.; Romans, B. W.; Covault, J. A.; Levy, M.; Posamentier, H. W.; Drinkwater, N. J., Architecture of turbidite channel systems on the continental slope: Patterns and predictions, Mar. Pet. Geol., 28, 728 (2011)
[236] McInerney, T.; Terzopoulos, D., A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis, Comput. Med. Graph., 19, 69 (1995)
[237] Mecke, K. R., (Additivity, Convexity, and beyond: Applications of Minkowski Functionals in Statistical Physics. Additivity, Convexity, and beyond: Applications of Minkowski Functionals in Statistical Physics, Springer Lecture Notes in Physics, vol. 554 (2000), Springer: Springer Berlin), 111
[238] Mecke, K. R.; Arns, C. H., Fluids in porous media: a morphometric approach, J. Phys.: Condens. Matter, 17, S503 (2004)
[239] Meerschman, E.; Pirot, G.; Mariethoz, G.; Straubhaar, J.; Meirvenne, M. V.; Renard, P., A practical guide to performing multiple-point statistical simulations with the direct sampling algorithm, Comput. Geosci., 52, 307 (2013)
[240] Mehrabi, A. R.; Rassamdana, H.; Sahimi, M., Characterization of long-range correlations in complex distributions and profiles, Phys. Rev. E, 56, 712 (1997)
[241] Mehrabi, A. R.; Sahimi, M., Coarsening of heterogeneous media: Application of wavelets, Phys. Rev. Lett., 79, 4385 (1997)
[242] Mehrabi, A. R.; Sahimi, M., Analysis and simulation of long-range correlations in curved space, Internat. J. Modern Phys. C, 20, 1211 (2009) · Zbl 1179.82033
[243] Mennis, J. L.; Jordan, L., The distribution of environmental equity: exploring spatial nonstationarity in multivariate models of air toxic releases, Ann. Assoc. Am. Geogr., 95, 249 (2005)
[244] Michael, H. A.; Li, H.; Boucher, A.; Sun, T.; Caers, J.; Gorelick, S. M., Combining geologic-process models and geostatistics for conditional simulation of 3-D subsurface heterogeneity, Water Resour. Res., 46, 2009 (2010), WR008414
[245] Miller, J.; Sun, T.; Li, H.; Stewart, J.; Genty, C.; Li, D.; Lyttle, C., Direct modeling of reservoirs through forward process-based models: Can we get there?, (Proc. Int. Pet. Technol. Conf. (2008), Society of Petroleum Engineers)
[246] Milton, G. W., Multicomponent composites, electrical networks and new types of continued fractions. I and II, Comm. Math. Phys., 111, 281 (1987) · Zbl 0624.41017
[247] Mondal, A.; Efendiev, Y.; Mallick, B.; Datta-Gupta, A., Bayesian uncertainty quantification for flows in heterogeneous porous media using reversible jump Markov chain Monte Carlo methods, Adv. Water Resour., 33, 241 (2010)
[248] Mondal, B.S., Sarkar, A.K., Hasan, M., Noman, N., 2010b. Reconstruction of gene regulatory networks using differential evolution. In: 13th International Conference on Computer and Information Technology (ICCIT), pp. 440.
[249] Moslehi, M.; de Barros, F. P.J.; Ebrahimi, F.; Sahimi, M., Upscaling of solute transport in heterogeneous porous media by wavelet transformations, Adv. Water Resour., 96, 180 (2016)
[250] Mosser, L.; Dubrule, O.; Blunt, M. J., Reconstruction of three-dimensional porous media using generative adversarial neural networks, Phys. Rev. E, 96, Article 043309 pp. (2017)
[251] Mosser, L.; Dubrule, O.; Blunt, M. J., Stochastic reconstruction of an oolitic limestone by generative adversarial networks, Transp. Porous Media, 125, 81 (2018)
[252] Mosser, L.; Dubrule, O.; Blunt, M. J., Stochastic seismic waveform inversion using generative adversarial networks as a geological prior, Math. Geosci., 52, 53 (2020) · Zbl 1428.86022
[253] Müller, H.; Michoux, N.; Bandon, D.; Geisbuhler, A., A review of content-based image retrieval systems in medical applications-clinical benefits and future directions, Int. J. Med. Inf., 73, 1 (2004)
[254] Munakata, T.; Nakamura, Y., Temperature control for simulated annealing, Phys. Rev. E, 64, Article 046127 pp. (2001)
[255] Mustapha, H.; Dimitrakopoulos, R., High-order stochastic simulation of complex spatially distributed natural phenomena, Math. Geosci., 42, 457 (2010) · Zbl 1194.86040
[256] Mustapha, H.; Dimitrakopoulos, R., A new approach for geological pattern recognition using high-order spatial cumulants, Comput. Geosci., 36, 313 (2010)
[257] Najman, L.; Schmitt, M., Watershed of a continuous function, Signal Process., 38, 99 (1994)
[258] Naserifar, S.; Goddard, W. A.; Liu, L.; Tsotsis, T. T.; Sahimi, M., Toward a process-based molecular model of SiC membranes. 2. Reactive dynamics simulation of the pyrolysis of polymer precursor to form amorphous SiC, J. Phys. Chem. C, 117, 3320 (2013)
[259] Naserifar, S.; Goddard III, W. A.; Tsotsis, T. T.; Sahimi, M., Toward a process-based molecular model of SiC membranes. III. Prediction of transport and separation of binary gaseous mixtures based on the atomistic reactive force field, J. Membr. Sci., 473, 85 (2015)
[260] Naserifar, S.; Goddard III, W. A.; Tsotsis, T. T.; Sahimi, M., First principles-based multiparadigm, multiscale strategy for simulating complex materials processes with applications to amorphous SiC films, J. Chem. Phys., 142, Article 174703 pp. (2015)
[261] Naserifar, S.; Liu, L.; Goddard, W. A.; Tsotsis, T. T.; Sahimi, M., Toward a process-based molecular model of SiC membranes. 1. Development of a reactive force field, J. Phys. Chem. C, 117, 3308 (2013)
[262] Nayak, J.; Naik, B.; Dinesh, P.; Vakula, K.; Dash, P. B., Firefly algorithm in biomedical and health care: Advances, issues and challenges, SN Comput. Sci., 1, 311 (2020)
[263] Nejad Ebrahimi, A.; Jamshidi, S.; Iglauer, S.; Bozorgmehry, R., Genetic algorithm-based pore network extraction from micro-computed tomography images, Chem. Eng. Sci., 92, 157 (2013)
[264] Nie, X.; Zou, C.; Li, Z.; Meng, X.; Qi, X., Numerical simulation of the electrical properties of shale gas reservoir rock based on digital core, J. Geophys. Eng., 13, 481 (2016)
[265] Nourani, Y.; Andersen, B., A comparison of simulated annealing cooling strategies, J. Phys. A, 31, 8373 (1998) · Zbl 0962.82068
[266] Novakovic, D.; White, C. D.; Corbeanu, R. M.; Hammon, W. S.; Bhattacharya, J. P.; McMechan, G. A., Hydraulic effects of shales in fluvial-deltaic deposits: Ground-penetrating radar, outcrop observations, geostatistics, and three-dimensional flow modeling for the ferron sandstone, utah, Math. Geol., 34, 857 (2002)
[267] Nussbaumer, R.; Mariethoz, G.; Gloaguen, E.; Holliger, K., Which path to choose in sequential Gaussian simulation, Math. Geosci., 50, 97 (2018) · Zbl 1406.86035
[268] Ogura, T.; Sato, C., A fully automatic 3D reconstruction method using simulated annealing enables accurate posterioric angular assignment of protein projections, J. Struct. Biol., 156, 371 (2006)
[269] Okabe, H.; Blunt, M. J., Prediction of permeability for porous media reconstructed using multiple-point statistics, Phys. Rev. E., 70, Article 066135 pp. (2004)
[270] Okabe, H.; Blunt, M. J., Pore space reconstruction using multiple-point statistics, J. Petrol. Sci. Eng., 46, 121 (2005)
[271] Okabe, H.; Blunt, M. J., Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics, Water Resour. Res., 43, 3 (2007)
[272] Oliver, D. S., Conditioning channel meanders to well observations, Math. Geol., 34, 185 (2002)
[273] Øren, P. E.; Bakke, S., Process-based reconstruction of sandstones and prediction of transport properties, Transp. Porous Media, 46, 311 (2002)
[274] Øren, P.-E.; Bakke, S., Reconstruction of berea sandstone and pore-scale modeling of wettability effects, J. Petrol. Sci. Eng., 39, 177 (2003)
[275] Ortiz, J. M.; Deutsch, C. V., Indicator simulation accounting for multiple-point statistics, Math. Geol., 36, 545-565 (2004) · Zbl 1267.86011
[276] Ortiz, J. M.; Emery, X., Integrating multiple point statistics into sequential simulation algorithms, (Leuangthong, O.; Deutsch, C. V., Geostatistics Banff 2004 (2005), Springer), 969-978 · Zbl 1366.86012
[277] Panda, M. N.; Lake, L. W., Parallel simulated annealing for stochastic reservoir modeling, SPE Pap., 26418 (1993)
[278] Pant, L. M.; Mitra, S. K.; Secanell, M., Multigrid hierarchical simulated annealing method for reconstructing heterogeneous media, Phys. Rev. E, 92, Article 063303 pp. (2015)
[279] Papakostas, G. A.; Nolan, J. W.; Mitropoulos, A. C., Nature-inspired optimization algorithms for the 3D reconstruction of porous media, Algorithms, 13, 65 (2020)
[280] Parra, A.; Ortiz, J. M., Conditional multiple-point simulation with a texture synthesis algorithm, (IAMG 2009 Conference (2009), Stanford University)
[281] Pérez, C.; Mariethoz, G.; Ortiz, J. M., Verifying the high-order consistency of training images with data for multiple-point geostatistics, Comput. Geosci., 70, 190 (2014)
[282] Perrier, E.; Mullon, C.; Rieu, M.; de Marsily, G., Computer construction of fractal soil structures: Simulation of their hydraulic and shrinkage properties, Water Resour. Res., 31, WR02214 (1995)
[283] Piasecki, R.; Olchawa, W.; Fraczek, D.; Bartecka, A., A two-stage reconstruction of microstructures with arbitrarily shaped inclusions, Materials (Basel), 13, 2748 (2020)
[284] Pilotti, M., Generation of realistic porous media by grains sedimentation, Transp. Porous Media, 33, 257 (1998)
[285] Pilotti, M., Reconstruction of clastic porous media, Transp. Porous Media, 41, 359 (2000)
[286] Pizzocri, D.; Genoni, R.; Antonello, F.; Barani, T.; Cappia, F., 3D reconstruction of two-phase random heterogeneous material from 2D sections: An approach via genetic algorithms, Nucl. Eng. Technol. (2021)
[287] Poli, R., Analysis of the publications on the applications of particle swarm optimisation, J. Artif. Evol. Appl., 2008, Article 685175 pp. (2008)
[288] Politis, M. G.; Kikkinides, E. S.; Kainourgiakis, M. E.; Stubos, A. K., A hybrid process-based and stochastic reconstruction method of porous media, Microporous Mesoporous Mater., 110, 992 (2008)
[289] Pourkamali Anaraki, M.; Sadeghi, M., Honey bee-inspired algorithms for SNP haplotype reconstruction problem, J. Exper. Theor. Artif. Intell., 28, 201 (2016)
[290] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; flannery, B. P., Numerical Recipes (2007), Cambridge University Press: Cambridge University Press London · Zbl 1132.65001
[291] Pyrcz, M. J.; Catuneanu, O.; Deutsch, C. V., Stochastic surface-based modeling of turbidite lobes, Am. Assoc. Petrol. Geol. Bull., 89, 177 (2005)
[292] Quenes, A.; Saad, N., A new, fast parallel simulated annealing algorithm for reservoir characterization, SPE Pap., 26419 (1993)
[293] Quiblier, J. A., A new three-dimensional modeling technique for studying porous media, J. Colloid Interface Sci., 98, 84 (1984)
[294] Rahman, S., A random field model for generating synthetic microstructures of functionally graded materials, Internat. J. Numer. Methods Engrg., 76, 972 (2008) · Zbl 1195.74309
[295] Raju, B.; Pandarinath, P.; Prasad, G. S., A new image reconstruction technique with aid of IPSO (improved particle swarm optimization) and DWT (discrete wavelet transform), J. Theor. Appl. Inform. Technol., 63, 675 (2014)
[296] Ram, D. J.; Sreenivas, T. H.; Subramanian, K. G., Parallel simulated annealing algorithms, J. Parallel Distr. Comput., 37, 207 (1996)
[297] Ramirez-Gutierrez, C. F.; Castaño Yepes, J. D.; Rodriguez-Garcia, M. E., Porosity and roughness determination of porous silicon thin films by genetic algorithms, Optik, 173, 271 (2018)
[298] Rasaei, M. R.; Sahimi, M., Efficient simulation of water flooding in three-dimensional heterogeneous reservoirs using wavelet transformations: Application to the SPE-10 model, Transp. Porous Media, 72, 311 (2008)
[299] Rasaei, M. R.; Sahimi, M., Upscaling of the permeability by multiscale wavelet transformations and simulation of multiphase flows in heterogeneous porous media, Comput. Geosci., 13, 187 (2009) · Zbl 1421.76229
[300] Rasaei, M. R.; Sahimi, M., Upscaling of the geological models of large-scale porous media using multiresolution wavelet transformations, J. Heat Transf., 131, Article 101007 pp. (2009)
[301] Ravishankar, S.; Ye, J. C.; Fessler, J. A., Image reconstruction: from sparsity to data-adaptive methods and machine learning, Proc. IEEE, 108, 86 (2020)
[302] Ray, P.; Chakrabarti, B. K.; Chakrabarti, A., Sherrington-kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations, Phys. Rev. B., 39, 11828 (1989)
[303] Reeves, C. R.; Rowe, J. E., Genetic Algorithms, Principle and Perspectives: A Guide to GA Theory (2003), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 1029.90081
[304] Rekanos, I. T., Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization, IEEE Trans. Geosci. Remote Sens., 46, 1967 (2008)
[305] Rezapour, A.; Ortega, A.; Sahimi, M., Upscaling of geological models of oil reservoirs with unstructured grids using lifting-based graph wavelet transforms, Transp. Porous Media, 127, 661 (2019)
[306] Ribeiro, R.R., Feitosa, A.R.S., de Souza, R.E., dos Santos, W.P., 2014. A modified differential evolution algorithm for the reconstruction of electrical impedance tomography images. In: 5th ISSNIP-IEEE Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC), pp. 1.
[307] Rice, S. O., Mathematical analysis of random noise, Bell Sys. Tech. J., 24, 46 (1945) · Zbl 0063.06487
[308] Rice, S. O., Mathematical analysis of random noise, Bell Sys. Tech. J., 23, 282 (1994) · Zbl 0063.06485
[309] Roberts, A. P., Morphology and thermal conductivity of model organic aerogels, Phys. Rev. E, 55, R1286 (1997)
[310] Roberts, A. P.; Knackstedt, M. A., Mechanical and transport properties of model foamed solids, J. Mater. Sci. Lett., 14, 1357 (1995)
[311] Roberts, A. P.; Knackstedt, M. A., Structure-property correlations in model composite materials, Phys. Rev. E, 54, 2313 (1996)
[312] Roberts, J. N.; Schwartz, L. M., Grain consolidation and electrical conductivity in porous media, Phys. Rev. B, 31, 5990 (1985)
[313] Roberts, A. P.; Teubner, M., Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and simulation, Phys. Rev. E, 51, 4141 (1995)
[314] Romero, C. E.; Carter, J. N., Using genetic algorithms for reservoir characterization, J. Petrol. Sci. Eng., 31, 113 (2001)
[315] Romero, C. E.; Cater, J. N.; Gringarten, A. C.; Zimmerman, R. W., A Modified Genetic Algorithm for Reservoir CharacterizationSPE 64765 (2000)
[316] Rozman, M. G.; Utz, M., Uniqueness of reconstruction of multiphase morphologies from two-point correlation functions, Phys. Rev. Lett., 89, Article 135501 pp. (2002)
[317] Rusdi, N. A.; Yahya, Z. R.; Roslan, N.; Wan Muhamad, W. Z.A., Reconstruction of medical images using artificial bee colony algorithm, Math. Probl. Eng., Article 8024762 pp. (2018), [Corrigendum: ibid., Article 8205349 (2020)]
[318] Saccomano, A. F.; Savioli, G. B.; Binder, M. B., Stochastic modeling of rock heterogeneities applying new autocorrelation estimators and simulated annealing, SPE Pap., 69654 (2001)
[319] Sahimi, M., Wavelet transformations and data processing: Application to characterization and simulation of large-scale porous media, Annu. Rev. Comput. Phys., VIII, 83 (2000) · Zbl 1169.94307
[320] Sahimi, M., Heterogeneous Materials I: Linear Transport and Optical Properties (2003), Springer: Springer New York · Zbl 1028.74001
[321] Sahimi, M., Heterogeneous Materials II: Nonlinear and Breakdown Properties and Atomistic Modeling (2003), Springer: Springer New York · Zbl 1028.74002
[322] Sahimi, M., Flow and Transport in Porous Media and Fractured Rock (2011), Wiley-VCH: Wiley-VCH Weinheim · Zbl 1219.76002
[323] Sahimi, M.; Hamzehpour, H., Efficient computational strategies for solving global optimization problems, Comput. Sci. Eng., 12, 4, 74 (2010)
[324] Sahimi, M.; Hashemi, M., Wavelet identification of the spatial distribution of fractures, Geophys. Res. Lett., 28, 611 (2001)
[325] Salazar, R.; Gelb, L. D., A computational study of the reconstruction of amorphous mesoporous materials from gas adsorption isotherms and structure factors via evolutionary optimization, Langmuir, 23, 530 (2007)
[326] Sanchez, R.; Tsotsis, T. T.; Sahimi, M., Computer simulation of gas generation and transport in landfiils. III: Development of landfills’ optimal model, Chem. Eng. Sci., 62, 6378 (2007)
[327] Santaló, L. A., Integral Geometry and Geometric Probability (1976), Addison-Wesley: Addison-Wesley Reading · Zbl 0342.53049
[328] Savioli, G. B.; Falcigno, E. D.; Binder, M. S.; Lake, L. W., Applications of Simulated Annealing in Actual But Atypical Permeability DataSPE paper 35345 (1996)
[329] Schug, A.; Herges, T.; Wenzel, W., Reproducible protein folding with the stochastic tunneling method, Phys. Rev. Lett., 91, Article 158102 pp. (2003)
[330] Schwartz, L. M.; Kimminau, S., Analysis of electrical conduction in the grain consolidation model, Geophysics, 52, 1402 (1987)
[331] Scriven, L. E., (Mittal, K. L., Micellization, Solubilization, and Microernulsions, Vol. 2 (1976), Plenum: Plenum New York)
[332] Sedgewick, R., Algorithms in C, Part 5: Graph Algorithms (2001), Addison-Wesley: Addison-Wesley Reading
[333] Semnani, S.; Borja, R. I., Quantifying the heterogeneity of shale through statistical combination of imaging across scales, Acta Geotechnica, 12, 1193 (2017)
[334] Sen, M. K.; Datta-Gupta, A.; Stoffa, P. L.; Lake, L. W.; Pope, G. A., Stochastic reservoir modeling using simulated annealing and genetic algorithms, SPE Formation Eval., 10, 49 (1995)
[335] Seppäen, A.; Vauhkonen1, M.; Vauhkonen1, P. J.; Somersalo, E.; Kaipio, J. P., Inverse Problems, 17, 467 (2001) · Zbl 0986.35134
[336] Shams, R.; Masihi, M.; Bozorgmehry Boozarjomehry, R.; Blunt, M. J., Coupled generative adversarial and auto-encoder neural networks to reconstruct three-dimensional multi-scale porous media, J. Petrol. Sci. Eng., 186, Article 106794 pp. (2020)
[337] Shannon, C. E., A mathematical theory of communication, Bell Syst. Technol. J., 27, 379 (1948) · Zbl 1154.94303
[338] Sharifzadehlari, M.; Fathianpour, N.; Renard, P.; Amirfattahi, R., Random partitioning and adaptive filters for multiple-point stochastic simulation, Stoch. Environ. Res. Risk Assess., 32, 1375 (2018)
[339] Sheehan, N.; Torquato, S., Generating microstructures with specified correlation functions, J. Appl. Phys., 89, 53 (2001)
[340] Shi, Y.; Eberhart, R. C., A modified particle swarm optimizer, Proc. IEEE Int. Conf. Evol. Comput., 69 (1998)
[341] Shi, J.; Wang, J., Optimized structure of two layered porous media with genetic algorithm for transpiration cooling, Int. J. Therm. Sci., 47, 1595 (2008)
[342] Shmaryan, L.E., Deutsch, C.V., 1999. Object-based modeling of fluvial/ deepwater reservoirs with fast data conditioning: Methodology and case studies, SPE Paper 56821, SPE Annual Technical Conference, Houston, Texas, pp. 877.
[343] Skorstad, A.; Hauge, R.; Holden, L., Well conditioning in a fluvial reservoir model, Math. Geol., 31, 857 (1999)
[344] Song, S., An improved simulated annealing algorithm for reconstructing 3D large-scale porous media, J. Petrol. Sci. Eng., 182, Article 106343 pp. (2019)
[345] Song, S.; Mukerji, T.; Hou, J., Geological facies modeling based on progressive growing of generative adversarial networks (GANs), Comput. Geosci., 25, 1251 (2021) · Zbl 1460.86006
[346] Song, S.; Mukerji, T.; Hou, J., GANSim: Conditional facies simulation using an improved progressive growing of generative adversarial networks (GANs), Math. Geosci. (2021) · Zbl 1477.86032
[347] Spanne, P.; Thovert, J.-F.; Jacquin, C. J.; Lindquist, W. B.; Jones, K. W.; Adler, P. M., Synchrotron computed microtomography of porous media: topology and transports, Phys. Rev. Lett., 73, 2001 (1994)
[348] Srivastava, R., An overview of stochastic methods for reservoir characterization, (Chambers, R. L., Stochastic Modeling and Geostatistics: Principles, Methods, and Case Studies. Stochastic Modeling and Geostatistics: Principles, Methods, and Case Studies, Comput. Appl., vol. 3 (1994), AAPG: AAPG Tulsa), 380
[349] Storn, R., On the usage of differential evolution for function optimization, (Proceedings of North American Fuzzy Information Processing (1996), IEEE: IEEE Berkeley, California), 519
[350] Storn, R.; Price, K., Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 341 (1997) · Zbl 0888.90135
[351] Stoyan, D.; Mecke, K., The boolean model: from matheron up to today, (Bilodeau, M.; Meyer, F.; Schmitt, M., Space, Structure and Randomness (2004), Springer: Springer Berlin), 151
[352] Strait, J.; Chkrebtii, O.; Kurtek, S., Parallel tempering strategies for model-based landmark detection on shapes, Commun. Statist. - Simul. Comput. (2019), https://www.tandfonline.com/doi/full/10.1080/03610918.2019.1670843 · Zbl 1524.62009
[353] Straubhaar, J.; Renard, P.; Mariethoz, G., Conditioning multiple-point statistics simulations to block data, Spat. Stat., 16, 53 (2016)
[354] Straubhaar, J.; Renard, P.; Mariethoz, G.; Chugunova, T.; Biver, P., Fast and interactive editing tools for spatial models, Math. Geosci., 51, 109 (2019) · Zbl 1406.86037
[355] Straubhaar, J.; Renard, P.; Mariethoz, G.; Froidevaux, R.; Besson, O., An improved parallel multiple-point algorithm using a list approach, Math. Geosci., 43, 305 (2011) · Zbl 1213.86018
[356] Straubhaar, J.; Walgenwitz, A.; Renard, P., Parallel multiple-point statistics algorithm based on list and tree structures, Math. Geosci., 45, 131 (2013)
[357] Strebelle, S., Conditional simulation of complex geological structures using multiple-point geostatistics, Math. Geol., 34, 1 (2002) · Zbl 1036.86013
[358] Strebelle, S.; Cavelius, C., Solving speed and memory issues in multiple-point statistics simulation program SNESIM, Math. Geosci., 46, 171 (2014) · Zbl 1322.65037
[359] Strebelle, S.; Payrazyan, K.; Caers, J., Modeling of a deepwater turbidite reservoir conditional to seismic data using multiple-point geostatistics, SPE Pap., 77425 (2002)
[360] Strebelle, S.; Zhang, T., Non-stationary multiple-point geostatistical models, (Leuangthong, O.; Deutsch, C. V., Geostatistics Banaff 2004. Geostatistics Banaff 2004, Quant. Geol. Geostat., vol. 14 (2005), Springer), 235
[361] Strobl, M. A.R.; Baker, D., On simulated annealing phase transitions in phylogeny reconstruction, Mol. Phylogenet. Evol., 101, 46 (2016)
[362] Sugita, Y.; Okamoto, Y., Replica-exchange molecular dynamics method for protein folding, Chem. Phys. Lett., 314, 141 (1999)
[363] Svergun, D. R., Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing, Biophys. J., 76, 2879 (1999)
[364] Swendsen, R. H.; Wang, J.-S., Replica Monte Carlo simulation of spin-glasses, Phys. Rev. Lett., 57, 2607 (1986)
[365] Tahmasebi, P., HYPPS: A hybrid geostatistical modeling algorithm for subsurface modeling, Water Resour. Res., 53, 5980 (2017)
[366] Tahmasebi, P., Accurate modeling and evaluation of microstructures in complex materials, Phys. Rev. E, 97, Article 023307 pp. (2018)
[367] Tahmasebi, P.; Hezarkhani, A., Comparison of optimized neural network with fuzzy logic for ore grade estimation, Aust. J. Basic App. Sci., 4, 764 (2010)
[368] Tahmasebi, P.; Hezarkhani, A., Application of a modular feedforward neural network for grade estimation, Nat. Resour. Res., 20, 25 (2011)
[369] Tahmasebi, P.; Hezarkhani, A., Hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation, Comput. Geosci., 42, 18 (2012)
[370] Tahmasebi, P.; Hezarkhani, A.; Sahimi, M., Multiple-point geostatistical modeling based on the cross-correlation functions, Comput. Geosci., 16, 779 (2012)
[371] Tahmasebi, P.; Javadpour, F.; Sahimi, M., Multiscale and multiresolution modeling of shales and their flow and morphological properties, Sci. Rep., 5, 16373 (2015)
[372] Tahmasebi, P.; Javadpour, F.; Sahimi, M., Three-dimensional stochastic characterization of shale SEM images, Transp. Porous Media, 110, 521 (2015)
[373] Tahmasebi, P.; Javadpour, F.; Sahimi, M., Stochastic shale permeability matching: Three-dimensional characterization and modeling, Int. J. Coal Geol., 165, 231 (2016)
[374] Tahmasebi, P.; Javapour, F.; Sahimi, M.; Piri, M., Multiscale study for stochastic characterization of shale samples, Adv. Water Resour., 89, 91 (2016)
[375] Tahmasebi, P.; Kamrava, S.; Bai, T.; Sahimi, M., Machine learning in geo- and environmental sciences: From small to large scale, Adv. Water Resour., 142, Article 103619 pp. (2020)
[376] Tahmasebi, P.; Sahimi, M., Reconstruction of three-dimensional porous media using a single thin section, Phys. Rev. E, 85, Article 066709 pp. (2012)
[377] Tahmasebi, P.; Sahimi, M., Cross-correlation function for accurate reconstruction of heterogeneous media, Phys. Rev. Lett., 110, Article 078002 pp. (2013)
[378] Tahmasebi, P.; Sahimi, M., Geostatistical simulation and reconstruction of porous media by a cross-correlation function and integration of hard and soft data, Transp. Porous Media, 107, 871 (2015)
[379] Tahmasebi, P.; Sahimi, M., Reconstruction of nonstationary disordered materials and media: Watershed transform and cross-correlation function, Phys. Rev. E, 91, Article 032401 pp. (2015)
[380] Tahmasebi, P.; Sahimi, M., Enhancing multiple-point geostatistical modeling. I: Graph theory and pattern adjustment, Water Resour. Res., 52, 2015 (2016), WR017806
[381] Tahmasebi, P.; Sahimi, M., Enhancing multiple-point geostatistical modeling. II: Iterative simulation and multiple distance functions, Water Resour. Res., 52, 2015 (2016), WR017807
[382] Tahmasebi, P.; Sahimi, M., A stochastic multiscale algorithm for modeling complex granular materials, Granul. Mater., 45, 20 (2018)
[383] Tahmasebi, P.; Sahimi, M.; Andrade, J. E., Image-based modeling of granular porous media, Geophys. Res. Lett., 44, 4738 (2017)
[384] Tahmasebi, P.; Sahimi, M.; Caers, J., MS-CCSIM: Accelerating pattern-based geostatistical simulation of categorical variables using a multi-scale search in Fourier space, Comput. Geosci., 67, 75 (2014)
[385] Tahmasebi, P.; Sahimi, M.; Kohanpur, A. H.; Valocchi, A., Direct modeling of granular materials, Poromechanics, VI, 1436 (2017)
[386] Talukdar, M. S.; Torsaeter, O., Reconstruction of chalk pore networks from 2D backscatter electron micrographs using a simulated annealing technique, J. Petrol. Sci. Eng., 33, 265 (2002)
[387] Talukdar, M. S.; Torsaeter, O.; Ionnidis, M. S.; Howard, J. J., Stochastic reconstruction, 3D characterization and network modeling of chalk, J. Petrol. Sci. Eng., 35, 1 (2002)
[388] Talukdar, M. S.; Torsaeter, O.; Ionnidis, M. S.; Howard, J. H., Stochastic reconstruction of chalk from 2D images, Transp. Porous Media, 48, 101 (2002)
[389] Tandri, H.; Bomma, C.; Calkins, H.; Bluemke, D. A., Magnetic resonance and computed tomography imaging of arrhythmogenic right ventricular dysplasia, J. Magn. Reson. Imaging., 19, 848 (2004)
[390] Tanese, R., Parallel genetic algorithm for a hypercube, (Grefenstelle, J. J., Genetic Algorithms and their Applications (1987), Lawrence Erlbaum Associates: Lawrence Erlbaum Associates Hillsdale), 177
[391] Tang, T.; Teng, Q.; He, X.; Luo, D., A pixel selection rule based on the number of different-phase neighbours for the simulated annealing reconstruction of sandstone microstructure, J. Microsc., 234, 262 (2009)
[392] Tetzlaff, D. M.; Harbaugh, J. W., Simulating Clastic Sedimentation (1989), Springer: Springer Berlin
[393] Teubner, M., Level surfaces of Gaussian random fields and microemulsions, Europhys. Lett., 14, 403 (1991)
[394] Teubner, M.; Strey, R., Origin of the scattering peak in microemulsions, J. Chem. Phys., 87, 3195 (1987)
[395] Thovert, J.-F.; Yousefian, F.; Spanne, P.; Jacquin, C. G.; Adler, P. M., Grain reconstruction of porous media: Application to a low-porosity fontainebleau sandstone, Phys. Rev. E, 63, Article 061307 pp. (2001)
[396] Tjelmeland, H., Stochastic Models in Reservoir Characterization and Markov Random Fields for Compact Objects (1996), Norwegian University of Science and Technology: Norwegian University of Science and Technology Trondheim, Norway, (Ph.D. Dissertation)
[397] Tjelmeland, H.; Eidsvik, J., Directional Metropolis-Hastings updates for posteriors with nonlinear likelihood, (Leuangthong, O.; Deutsch, C. V., Geostatistics Banaff 2004 (2004), Springer: Springer Dordrecht), 95
[398] Torquato, S., Random Heterogeneous Materials (2002), Springer: Springer New York · Zbl 0988.74001
[399] Torquato, S., Inverse optimization techniques for targeted self-assembly, Soft Matter, 5, 1157 (2009)
[400] Torquato, S., Optimal design of heterogeneous materials, Annu. Rev. Mater. Res., 40, 101 (2010)
[401] Torquato, S.; Hyun, S., Effective-medium approximation for composite media: realizable single-scale dispersions, J. Appl. Phys., 89, 1725 (2001)
[402] Torquato, S.; Lu, B., Chord-length distribution function for two-phase random media, Phys. Rev. E, 47, 2950 (1993)
[403] Valsecchi, A.; Damas, S.; Tubilleja, C.; Arechalde, J., Stochastic reconstruction of 3D porous media from 2D images using generative adversarial networks, Neurocomputing, 399, 227 (2020)
[404] VanDerwerken, D. N.; Schmidler, S. C., Parallel Markov chain Monte Carlo (2013), arXiv:1312.7479 (accessed 25 June 2021)
[405] de Vicente, J.; Lanchares, J.; Hermida, R., Placement by thermodynamic simulated annealing, Physica A, 317, 415 (2003) · Zbl 1046.68127
[406] Vilhelmsen, T. N.; Auken, E.; Christiansen, A. V.; Sanchez Barfod, A.; Marker, P. A.; Bauer-Gottwein, P., Combining clustering methods with MPS to estimate structural uncertainty for hydrological models, Front. Earth Sci., 7, 181 (2019)
[407] Volker, C. A.; Minor, A. M., Focused ion beam microscopy and micromachining, MRS Bull., 32, 389 (2007)
[408] Wang, Y.; Arns, C. H.; Rahman, S. S.; Arns, J.-Y., Porous structure reconstruction using convolutional neural networks, Math. Geosci., 50, 781 (2018) · Zbl 1402.86005
[409] Wang, Y.; Arns, J.-Y.; Rahman, S. S.; Arns, C. H., Three-dimensional porous structure reconstruction based on structural local similarity via sparse representation on micro-computed-tomography images, Phys. Rev. E, 98, Article 043310 pp. (2018)
[410] Wang, P.; Lin, J.; Wang, M., An image reconstruction algorithm for electrical capacitance tomography based on simulated annealing particle swarm optimization, J. Appl. Res. Technol., 13 (2015), Ciudad de México abr.
[411] Wang, S.; Wang, Y.; Du, W.; Sun, F.; Wang, X.; Zhou, C.; Liang, Y., A multi-approaches-guided genetic algorithm with application to operon prediction, Artif. Intell. Med., 41, 151 (2007)
[412] Wang, Z. G.; Wong, Y. S.; Rahman, M., Development of a parallel optimization method based on genetic simulated annealing algorithm, Parallel Comput., 31, 839 (2005)
[413] Wenzel, W.; Hamacher, K., Stochastic tunneling approach for global optimization of complex potential energy landscapes, Phys. Rev. Lett., 82, 3003 (1999) · Zbl 1031.81538
[414] White, C. D.; Willis, B. J., A method to estimate length distributions from outcrop data, Math. Geol., 32, 389, 389 (2000)
[415] Wietzerbin, J.; Mallet, J. L., Parameterization of complex 3D heterogeneities: A new CAD approach, SPE Comput. Appl., 6, 11 (1994)
[416] Willis, B. J.; White, C. D., Quantitative outcrop data for flow simulation, J. Sediment. Res., 70, 788, 788 (2000)
[417] Wu, J.; Boucher, A.; Zhang, T., A sgems code for pattern simulation of continuous and categorical variables: FILTERSIM, Comput. Geosci., 34, 1863 (2008)
[418] Wu, W.; Jiang, F., Simulated annealing reconstruction and characterization of the three-dimensional microstructure of a LiCoO \({}_2\) lithium-ion battery cathode, Mater. Charact., 80, 62 (2013)
[419] Wu, Y.; Lin, C.; Ren, L.; Yan, W.; An, S.; Chen, B.; Wang, Y.; Zhang, X.; You, C.; Zhang, Y., Reconstruction of 3D porous media using multiple-point statistics based on a 3D training image, J. Natural Gas Sci. Eng., 51, 129 (2018)
[420] Wu, K.; Van Dijke, M. I.J.; Couples, G. D.; Jiang, Z.; Ma, J.; Sorbie, K. S.; Crawford, J.; Young, I.; Zhang, X., 3D stochastic modelling of heterogeneous porous media – applications to reservoir rocks, Transp. Porous Media, 65, 443 (2006)
[421] Xu, H.; Dikin, D. A.; Burkhart, C.; Chen, W., Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials, Comput. Mater. Sci., 85, 206 (2014)
[422] Xu, L.; Liu, X.; Liang, L., A pore network model reconstruction method via genetic algorithm, J. Natural Gas Sci. Eng., 21, 907 (2014)
[423] Xu, T.; Reuschen, S.; Nowak, W.; Hendricks Franssen, H.-J., Preconditioned crank-nicolson Markov chain Monte Carlo coupled with parallel tempering: An efficient method for Bayesian inversion of multi-Gaussian log-hydraulic conductivity fields, Water Resour. Res., 56, Article e2020WR pp. (2020), 027110
[424] Yan, Q.; de Pablo, J., Fast calculation of the density of states of a fluid by Monte Carlo simulations, Phys. Rev. Lett., 90, Article 035701 pp. (2003)
[425] Yang, X.-S., Nature-Inspired Metaheuristic Algorithms (2010)
[426] Yang, Z.; Li, X.; Brinson, L. C.; Choudhary, A. N.; Chen, W.; Agrawal, A., Microstructural materials design via deep adversarial learning methodology, J. Mech. Des., 140, Article 111416 pp. (2018)
[427] Yao, J.; Frykman, P.; Kalaydjian, F.; Thovert, J. F.; Adler, P. M., High-order moments of the phase function for real and reconstructed model porous media: A comparison, J. Colloid Interface Sci., 156, 478 (1993)
[428] Yao, J.; Wang, C.; Yang, Y.; Hu, R.; Wang, X., The construction of carbonate digital rock with hybrid superposition method, J. Petrol. Sci. Eng., 110, 263 (2013)
[429] Yeong, C. L.Y.; Torquato, S., Reconstructing random media, Phys. Rev. E, 57, 495 (1998)
[430] Yeong, C. L.Y.; Torquato, S., Reconstructing random media. II. Three-dimensional media from two-dimensional cuts, Phys. Rev. E, 58, 224 (1998)
[431] Yuan, H.; Lee, J. H.; Guilkey, J. E., Stochastic reconstruction of the microstructure of equilibrium form snow and computation of effective elastic properties, J. Glaciology, 56, 405 (2010)
[432] Zachary, C. E.; Torquato, S., Improved reconstructions of random media using dilation and erosion processes, Phys. Rev. E, 84, Article 056102 pp. (2011)
[433] Zha, K.; Li, X.; Xing, Y.; He, L.; Li, D., Reconstruction of shale image based on wasserstein generative adversarial networks with gradient penalty, Adv. Geo-Energy Res., 4, 107 (2020)
[434] Zhan, Z.; Zhang, J.; Li, Y.; Chung, H. S., Adaptive particle swarm optimization, IEEE Trans. Syst. Man Cybern. B, 39, 1362 (2009)
[435] Zhand, Z.-d.; Alkhalifah, T., High-resolution reservoir characterization using deep learning-aided elastic full-waveform inversion: The north sea field data example, Geophysics, 85, WA137-46 (2020)
[436] Zhang, R.; Bouman, C. A.; Thibault, J.-B.; Sauer, K. D., Gaussian mixture Markov random field for image denoising and reconstruction, GlobalSIP (2013), https://engineering.purdue.edu/bouman/publications/orig-pdf/GlobalSIP2013b.pdf
[437] Zhang, T.; Du, Y.; Huang, T.; Li, X., GPU-Accelerated 3D reconstruction of porous media using multiple-point statistics, Comput. Geosci., 19, 79 (2015) · Zbl 1327.76147
[438] Zhang, T.; Du, Y.; Huang, T.; Yang, J.; Li, X., Stochastic simulation of patterns using ISOMAP for dimensionality reduction of training images, Comput. Geosci., 79, 82 (2015)
[439] Zhang, D., Gong, J., Wang, Y., 2009. A conditional random field model for 3D reconstruction in image sequences. In: Proc. SPIE 7496, MIPPR 2009: Pattern Recognition and Computer Vision, 74961E.
[440] Zhang, C.; Song, X.; Azevedo, L., U-net generative adversarial network for subsurface facies modeling, Comput. Geosci., 25, 553 (2021) · Zbl 1453.86047
[441] Zhang, T.; Switzer, P.; Journel, A. G., Filter-based classification of training image patterns for spatial simulation, Math. Geol., 38, 63 (2006) · Zbl 1119.86313
[442] Zhang, Y.; Wang, S.; Ji, G., A comprehensive survey on particle swarm optimization algorithm and its applications, Math. Probl. Eng., 2015, Article 931256 pp. (2015) · Zbl 1394.90588
[443] Zhang, Y.; Yan, M.; Wan, Y.; Jiao, Z.; Chen, Y.; Chen, F.; Xia, C.; Ni, M., High-throughput 3D reconstruction of stochastic heterogeneous microstructures in energy storage materials, Npj Comput. Mater., 5 (2019), Article number: 11
[444] Zhao, J.; Sun, J.; Liu, X.; Chen, H.; Cui, L., Numerical simulation of the electrical properties of fractured rock based on digital rock technology, J. Geophys. Eng., 10, Article 055009 pp. (2013)
[445] Zhao, X.; Yao, J.; Yi, Y., A new stochastic method of reconstructing porous media, Transp. Porous Media, 69, 1 (2007)
[446] Zhou, X. P.; Xiao, N., 3D numerical reconstruction of porous sandstone using improved simulated annealing algorithms, Rock Mech. Rock Eng., 51, 2135 (2018)
[447] Zhu, X. L., A review of Markov chain Monte Carlo method, Statist. Decision, 21, 151 (2009)
[448] Zhu, Y. H.; Tao, G., Sequential indicator simulation technique and its application in 3D digital core modeling, Well Logging Technol., 31, 112 (2007)
[449] Zhu, W.; Yu, W.; Chen, Y., Digital core modeling from irregular grains, J. Appl. Geophys., 85, 37 (2012)
[450] Zhu, L.; Zhang, C.; Zhang, C.; Zhou, X.; Zhang, Z.; Nie, X.; Liu, W.; Zhu, B., Challenges and prospects of digital core-reconstruction research, Geofluids, Article 7814180 pp. (2019)
[451] Zuo, C.; Pan, Z.; Liang, H., Accelerating simulation for the multiple-point statistics algorithm using vector quantization, Phys. Rev. E, 97, Article 033302 pp. (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.