×

On steady distributions of kinetic models of conservative economies. (English) Zbl 1138.91020

Summary: We analyze the large-time behavior of various kinetic models for the redistribution of wealth in simple market economies introduced in the pertinent literature in recent years. As specific examples, we study models with fixed saving propensity introduced by Chakraborti and Chakrabarti [Eur. Phys. J. B 17, 167–170 (2000)], as well as models involving both exchange between agents and speculative trading as considered by S. Cordier et al. [J. Stat. Phys. 120, No. 1–2, 253–277 (2005; Zbl 1133.91474)]. We derive a sufficient criterion under which a unique non-trivial stationary state exists, and provide criteria under which these steady states do or do not possess a Pareto tail. In particular, we prove the absence of Pareto tails in pointwise conservative models, like the one of Chakraborti and Chakrabarti [loc. cit.], while models with speculative trades introduced in [J. Stat. Phys. 120, No. 1–2, 253–277 (2005; Zbl 1133.91474)] develop fat tails if the market is “risky enough”. The results are derived by a Fourier-based technique first developed for the Maxwell-Boltzmann equation [G. Gabetta et al., J. Stat. Phys. 81, No. 5–6, 901–934 (1995; Zbl 1081.82616); M. Bisi et al., J. Stat. Phys. 118, No. 1–2, 301–331 (2005; Zbl 1085.82008); L. Pareschi and G. Toscani, J. Stat. Phys. 124, No. 2–4, 747–779 (2006; Zbl 1134.82037)] and from a recursive relation which allows to calculate arbitrary moments of the stationary state.

MSC:

91B24 Microeconomic theory (price theory and economic markets)
91B30 Risk theory, insurance (MSC2010)
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
82C40 Kinetic theory of gases in time-dependent statistical mechanics

References:

[1] Bisi, M., Carrillo, J.A., Toscani, G.: Contractive Metrics for a Boltzmann equation for granular gases: Diffusive equilibria. J. Stat. Phys. 118(1–2), 301–331 (2005) · Zbl 1085.82008 · doi:10.1007/s10955-004-8785-5
[2] Bisi, M., Carrillo, J.A., Toscani, G.: Decay rates in probability metrics towards homogeneous cooling states for the inelastic Maxwell model. J. Stat. Phys. 124(2–4), 625–653 (2006) · Zbl 1135.82028 · doi:10.1007/s10955-006-9035-9
[3] Bobylev, A.V.: The theory of the spatially Uniform Boltzmann equation for Maxwell molecules. Sov. Sci. Rev. C 7, 112–229 (1988) · Zbl 0850.76619
[4] Bobylev, A.V., Carrillo, J.A., Gamba, I.: On some properties of kinetic and hydrodynamics equations for inelastic interactions. J. Stat. Phys. 98, 743–773 (2000) · Zbl 1056.76071 · doi:10.1023/A:1018627625800
[5] Bobylev, A.V., Cercignani, C.: Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions. J. Stat. Phys. 110, 333–375 (2003) · Zbl 1134.82324 · doi:10.1023/A:1021031031038
[6] Bouchaud, J.P., Mézard, M.: Wealth condensation in a simple model of economy. Physica A 282, 536–545 (2000) · doi:10.1016/S0378-4371(00)00205-3
[7] Carrillo, J.A., Toscani, G.: Contractive probability metrics and asymptotic behavior of dissipative kinetic equations. Riv. Mat. Univ. Parma 6, 75–198 (2007) · Zbl 1142.82018
[8] Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Applied Mathematical Sciences, vol. 106. Springer, New York (1994) · Zbl 0813.76001
[9] Chakraborti, A.: Distributions of money in models of market economy. Int. J. Mod. Phys. C 13, 1315–1321 (2002) · doi:10.1142/S0129183102003905
[10] Chakraborti, A., Chakrabarti, B.K.: Statistical mechanics of money: how saving propensity affects its distributions. Eur. Phys. J. B 17, 167–170 (2000) · doi:10.1007/s100510070173
[11] Chatterjee, A., Chakrabarti, B.K., Manna, S.S.: Pareto law in a kinetic model of market with random saving propensity. Physica A 335, 155–163 (2004) · doi:10.1016/j.physa.2003.11.014
[12] Chakraborti, A., Germano, G., Heinsalu, E., Patriarca, M.: Relaxation in statistical many-agent economy models. Eur. Phys. J. B 57, 219–224 (2007) · Zbl 1189.91166 · doi:10.1140/epjb/e2007-00122-7
[13] Cordier, S., Pareschi, L., Toscani, G.: On a kinetic model for a simple market economy. J. Stat. Phys. 120, 253–277 (2005) · Zbl 1133.91474 · doi:10.1007/s10955-005-5456-0
[14] Das, A., Yarlagadda, S.: Analytic treatment of a trading market model. Phys. Scr. T 106, 39–40 (2003) · Zbl 1129.91319 · doi:10.1238/Physica.Topical.106a00039
[15] Desvillettes, L., Furioli, G., Terraneo, E.: Propagation of Gevrey regularity for solutions of Boltzmann equation for Maxwellian molecules. Trans. Am. Math. Soc. (in press) · Zbl 1159.76044
[16] Di Matteo, T., Aste, T., Hyde, S.T.: In: Mallamace, F., Stanley, H.E. (eds.) The Physics of Complex Systems (New Advances and Perspectives). IOS Press, Amsterdam (2004) · Zbl 1127.91365
[17] Drǎgulescu, A., Yakovenko, V.M.: Statistical mechanics of money. Eur. Phys. J. B 17, 723–729 (2000) · doi:10.1007/s100510070114
[18] Drǎgulescu, A., Yakovenko, V.M.: Exponential and power law probability distribution of wealth and income in the United Kingdom and the United States. Physica A 299, 213–221 (2001) · Zbl 0974.91519 · doi:10.1016/S0378-4371(01)00298-9
[19] Düring, B., Toscani, G.: Hydrodynamics from kinetic models of conservative economies. Physica A 384, 493–506 (2007) · doi:10.1016/j.physa.2007.05.062
[20] Ernst, M.H., Brito, R.: High energy tails for inelastic Maxwell models. Europhys. Lett. 43, 497–502 (2002)
[21] Ernst, M.H., Brito, R.: Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails. J. Stat. Phys. 109, 407–432 (2002) · Zbl 1015.82030 · doi:10.1023/A:1020437925931
[22] Gabetta, E., Toscani, G., Wennberg, B.: Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation. J. Stat. Phys. 81, 901–934 (1995) · Zbl 1081.82616 · doi:10.1007/BF02179298
[23] Gamba, I.M., Rjasanow, S., Wagner, W.: Direct simulation of the uniformly heated granular Boltzmann equation. Math. Comput. Model. 42, 683–700 (2005) · Zbl 1088.35049 · doi:10.1016/j.mcm.2004.02.047
[24] Gosse, L., Toscani, G.: Identification of asymptotic decay to self-similarity for one-dimensional filtration equations. SIAM J. Numer. Anal. 43(6), 2590–2606 (2006) · Zbl 1145.76048 · doi:10.1137/040608672
[25] Hayes, B.: Follow the money. Am. Sci. 90(5), 400–405 (2002)
[26] Ispolatov, S., Krapivsky, P.L., Redner, S.: Wealth distributions in asset exchange models. Eur. Phys. J. B 2, 267–276 (1998) · doi:10.1007/s100510050249
[27] Kac, M.: Probability and Related Topics in the Physical Sciences. Interscience Publishers, New York (1959) · Zbl 0087.33003
[28] Levy, M., Solomon, S.: New evidence for the power-law distribution of wealth. Physica A 242, 90–94 (1997) · doi:10.1016/S0378-4371(97)00217-3
[29] Levy, H., Levy, M., Solomon, S.: Microscopic Simulations of Financial Markets. Academic Press, New York (2000) · Zbl 0056.19802
[30] Malcai, O., Biham, O., Solomon, S., Richmond, P.: Theoretical analysis and simulations of the generalized Lotka–Volterra model. Phys. Rev. E 66, 031102 (2002) · doi:10.1103/PhysRevE.66.031102
[31] Mandelbrot, B.: The Pareto–Lévy law and the distribution of income. Int. Econ. Rev. 1, 79–106 (1960) · Zbl 0201.51101 · doi:10.2307/2525289
[32] Matthes, D., Toscani, G.: Analysis of a model for wealth redistribution. Preprint (2007) · Zbl 1148.35304
[33] Mohanty, P.K.: Generic features of the wealth distribution in an ideal-gas-like market. Phys. Rev. E 74(1), 011117 (2006) · doi:10.1103/PhysRevE.74.011117
[34] Pareschi, L., Toscani, G.: Self-similarity and power-like tails in nonconservative kinetic models. J. Stat. Phys. 124(2–4), 747–779 (2006) · Zbl 1134.82037 · doi:10.1007/s10955-006-9025-y
[35] Pareto, V.: Cours d’Economie Politique. Lausanne and Paris (1897)
[36] Patriarca, M., Chakraborti, A., Kaski, K.: Statistical model with a standard {\(\Gamma\)} distribution. Phys. Rev. E 70, 016104 (2004) · doi:10.1103/PhysRevE.70.016104
[37] Pulvirenti, A., Toscani, G.: Asymptotic properties of the inelastic Kac model. J. Stat. Phys. 114, 1453–1480 (2004) · Zbl 1072.82030 · doi:10.1023/B:JOSS.0000013964.98706.00
[38] Repetowicz, P., Hutzler, S., Richmond, P.: Dynamics of money and income distributions. Physica A 356(2–4), 641–654 (2005) · doi:10.1016/j.physa.2005.04.010
[39] Rjasanow, S.: Monte-Carlo methods for the Boltzmann equation. In: Degond, P., Pareschi, L., Russo, G. (eds.) Modeling and Computational Methods for Kinetic Equations, pp. 81–115. Birkhäuser Boston, Cambridge (2004) · Zbl 1106.82039
[40] Sinha, S.: The Rich Are Different!: Pareto Law from asymmetric interactions in asset exchange models. In: Chatterjee, A., Chakrabarti, B.K., Yarlagadda, S. (eds.) Econophysics of Wealth Distributions, pp. 177–184. Springer, New York (2005)
[41] Slanina, F.: Inelastically scattering particles and wealth distribution in an open economy. Phys. Rev. E 69, 046102 (2004) · doi:10.1103/PhysRevE.69.046102
[42] Solomon, S.: Stochastic Lotka–Volterra systems of competing auto-catalytic agents lead generically to truncated Pareto power wealth distribution, truncated Levy distribution of market returns, clustered volatility, booms and crashes. In: Refenes, A.P.N., Burgess, A.N., Moody, J.E. (eds.) Computational Finance 97. Kluwer Academic, Dordrecht (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.