×

On essentially \(\Pi \)-injective modules and rings. (English) Zbl 07909508

Author’s abstract: In this paper, we study modules having the property that are invariant under some idempotent endomorphisms of its injective envelope. Such modules are called essentially \(\pi \)-injective. It is shown that (1) \(M\) is essentially \(\pi \)-injective iff for any essentially finite direct summand \(X_1\) of \(M\) and any submodule \(X_2\) of \(M\) with \(X_1\cap X_2=0\), there exists a direct summand \(X_0\) of \(M\) containing \(X_2\) such that \(M= X_1\oplus X_0\), (2) \(M\) is essentially \(\pi \)-injective iff \(M\) is an ef-extending right \(R\)-module and for any decomposition \(M= M_1\oplus M_2\) with \(M_1\) essentially finite, \(M_1\) and \(M_2\) are relatively injective, (3) if \(M\) is essentially \(\pi \)-injective and \(R\) satisfies ACC on right ideals of the form \(r(m)\), \(m\in M \), then \(M\) is a direct sum of uniform submodules. We also describe rings via essentially \(\pi \)-injective modules. It is shown that \(R\) is a semisimple artinian ring iff the direct sum of any two essentially \(\pi \)-injective right \(R\)-modules is essentially \(\pi \)-injective.

MSC:

16D50 Injective modules, self-injective associative rings
16D60 Simple and semisimple modules, primitive rings and ideals in associative algebras
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
Full Text: DOI

References:

[1] Camillo, V., Yousif, M. (1991). CS-modules with ACC or DCC on essential submodules. Commun. Algebra19:655-662. DOI: . · Zbl 0718.16006
[2] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R. (1994). Extending Modules. Pitman Research Notes in Mathematics, 313. Harlow: Longman.
[3] Goel, V. K., Jain, S. K. (1978). π-injective modules and rings whose cyclics are π-injective. Commun. Algebra6(1):59-73. DOI: . · Zbl 0368.16010
[4] Jeremy, L. (1974). Modules et anneaux quasi-continus. (French). Can. Math. Bull.17:217-228. DOI: . · Zbl 0301.16024
[5] Goodearl, K. R. (1976). Ring Theory: Nonsingular Rings and Modules. New York: M. Dekker. · Zbl 0336.16001
[6] Karabacak, F., Kosan, M. T., Quynh, T. C., Tai, D. D., Tasdemir, O. (2020). On NCS modules and rings. Commun. Algebra48(12):5236-5246. DOI: . · Zbl 1471.16008
[7] Karabacak, F., Kosan, M. T., Quynh, T. C., Tasdemir, O. (2022). On modules and rings in which complements are isomorphic to direct summands. Commun. Algebra50(3):1154-1168. DOI: . · Zbl 1500.16024
[8] Lam, T. Y. (1999). Lectures on Modules and Rings. Graduate Texts in Mathematics, Vol. 189. New York: Springer-Verlag. · Zbl 0911.16001
[9] Mohamed, S. H., Muller, B. J. (1990). Continuous and Discrete Modules. London Mathematical Society Lecture Note Series, No. 147. Cambridge, UK: Cambridge University Press. · Zbl 0701.16001
[10] Nicholson, W. K., Yousif, M. F. (1994). On quasi-continuous rings. Proc. Am. Math. Soc. 120:1049-1051. · Zbl 0807.16019
[11] Nicholson, W. K., Yousif, M. F. (2003). Quasi-Frobenius Rings. Cambridge: Cambridge University Press. · Zbl 1042.16009
[12] Quynh, T. C. (2009). Some characterizations of ef-extending rings. Int. Electron. J. Algebra5:17-26. · Zbl 1185.16003
[13] Quynh, T. C., Kosan, M. T. (2014). On ADS modules and rings. Commun. Algebra42(8):3541-3551. DOI: . · Zbl 1301.16005
[14] Smith, P. F. (1990). CS-modules and weak CS-modules. In: Noncommutative Ring Theory (Athens, OH, 1989), Lecture Notes in Mathematics, 1448. Berlin: Springer, pp. 99-115. · Zbl 0714.16007
[15] Thuyet, L. V., Wisbauer, R. (1997). Extending property for finitely generated submodules. Vietnam J. Math. 25(1):65-73. · Zbl 0883.16002
[16] Trang, D. T., Koşan, M. T., Taşdemir, O., Quynh, T. C. (2023). On modules and rings having large absolute direct summands. Commun. Algebra51(12):4949-4961. DOI: . · Zbl 1535.16001
[17] Zelmanowitz, J. M. (1972). Regular modules. Trans. Amer. Math. Soc.163:341-355. DOI: . · Zbl 0227.16022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.