×

On the approximation of quasistatic evolutions for the debonding of a thin film via vanishing inertia and viscosity. (English) Zbl 1439.35314

Summary: In this paper, we contribute to studying the issue of quasistatic limit in the context of Griffith’s theory by investigating a one-dimensional debonding model. It describes the evolution of a thin film partially glued to a rigid substrate and subjected to a vertical loading. Taking viscosity into account and under suitable assumptions on the toughness of the glue, we prove that, in contrast to what happens in the undamped case, dynamic solutions converge to the quasistatic one when inertia and viscosity go to zero, except for a possible discontinuity at the initial time. We then characterise the size of the jump by means of an asymptotic analysis of the debonding front.

MSC:

35L20 Initial-boundary value problems for second-order hyperbolic equations
74K35 Thin films
35R35 Free boundary problems for PDEs
70F40 Problems involving a system of particles with friction

References:

[1] Agostiniani, V., Second order approximations of quasistatic evolution problems in finite dimension, Discrete Contin. Dyn. Syst., 32, 1125-1167 (2012) · Zbl 1451.34091 · doi:10.3934/dcds.2012.32.1125
[2] Almi, S.; Dal Maso, G.; Toader, R., Quasi-static crack growth in hydraulic fracture, J. Nonlinear Anal., 109, 301-318 (2014) · Zbl 1437.74024 · doi:10.1016/j.na.2014.07.009
[3] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs (2000), Oxford: Clarendon Press, Oxford · Zbl 0957.49001
[4] Bourdin, B.; Francfort, GA; Marigo, J-J, The variational approach to fracture, J. Elast., 91, 5-148 (2008) · Zbl 1176.74018 · doi:10.1007/s10659-007-9107-3
[5] Burridge, R.; Keller, JB, Peeling, slipping and cracking: some one-dimensional free boundary problems in mechanics, SIAM Rev., 20, 31-61 (1978) · Zbl 0394.73093 · doi:10.1137/1020003
[6] Conti, M.; Danese, V.; Giorgi, C.; Pata, V., A model of viscoelasticity with time-dependent memory kernels, Am. J. Math., 140, 349-389 (2018) · Zbl 1480.45010 · doi:10.1353/ajm.2018.0008
[7] Dal Maso, G.; Scala, R., Quasistatic evolution in perfect plasticity as limit of dynamic processes, J. Differ. Equ., 26, 915-954 (2014) · Zbl 1309.74017
[8] Dal Maso, G.; Lazzaroni, G.; Nardini, L., Existence and uniqueness of dynamic evolutions for a peeling test in dimension one, J. Differ. Equ., 261, 4897-4923 (2016) · Zbl 1347.35143 · doi:10.1016/j.jde.2016.07.012
[9] Dautray, R.; Lions, J-L, Mathematical Analysis and Numerical Methods for Science and Technology. Volume 1, Physical Origins and Classical Methods (1992), Berlin: Springer, Berlin · Zbl 0755.35001
[10] Dumouchel, P-E; Marigo, J-J; Charlotte, M., Dynamic fracture: an example of convergence towards a discontinuous quasistatic solution, Contin. Mech. Thermodyn., 20, 1-19 (2008) · Zbl 1160.74401 · doi:10.1007/s00161-008-0071-3
[11] Freund, LB, Dynamic Fracture Mechanics. Cambridge Monographs on Mechanics and Applied Mathematics (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0712.73072
[12] Hellan, K., Debond dynamics of an elastic strip-I. Timoshenko beam properties and steady motion, Int. J. Fract., 14, 91-100 (1978) · doi:10.1007/BF00032387
[13] Hellan, K., Debond dynamics of an elastic strip-II, Simple transient motion. Int. J. Fract., 14, 173-184 (1978)
[14] Hellan, K., Introduction to Fracture Mechanics (1984), New York: McGraw-Hill, New York
[15] Lazzaroni, G., Nardini, L.: On the 1d wave equation in time-dependent domains and the problem of debond initiation. ESAIM: COCV. (2017). 10.1051/cocv/2019006 · Zbl 1437.35445
[16] Lazzaroni, G.; Nardini, L., Analysis of a dynamic peeling test with speed-dependent toughness, SIAM J. Appl. Math., 78, 1206-1227 (2018) · Zbl 1420.35400 · doi:10.1137/17M1147354
[17] Lazzaroni, G.; Nardini, L., On the quasistatic limit of dynamic evolutions for a peeling test in dimension one, J. Nonlinear Sci., 28, 269-304 (2018) · Zbl 1516.35556 · doi:10.1007/s00332-017-9407-0
[18] Lazzaroni, G.; Bargellini, R.; Dumouchel, P-E; Marigo, J-J, On the role of kinetic energy during unstable propagation in a heterogeneous peeling test, Int. J. Fract., 175, 127-150 (2012) · doi:10.1007/s10704-012-9708-0
[19] Lazzaroni, G.; Rossi, R.; Thomas, M.; Toader, R., Rate-independent damage in thermo-viscoelastic materials with inertia, J. Dyn. Differ. Equ., 30, 1311-1364 (2018) · Zbl 1412.35325 · doi:10.1007/s10884-018-9666-y
[20] Mielke, A.; Roubíček, T., Rate-Independent Systems: Theory and Application, Applied Mathematical Sciences (2015), New York: Springer, New York · Zbl 1339.35006
[21] Misra, S.; Gorain, GC, Stability of an inhomogeneous damped vibrating string, Appl. Appl. Math., 9, 435-448 (2014) · Zbl 1302.35047
[22] Nardini, L., A note on the convergence of singularly perturbed second order potential-type equations, J. Dyn. Differ. Equ., 29, 783-797 (2017) · Zbl 1376.34055 · doi:10.1007/s10884-015-9461-y
[23] Riva, F.: A continuous dependence result for a dynamic debonding model in dimension one. Milan J. Math. (2019). 10.1007/s00032-019-00303-5 · Zbl 1429.35024
[24] Riva, F., Nardini, L.: Existence and uniqueness of dynamic evolutions for a one-dimensional debonding model with damping. (2018). arXiv:1810.12006v2 · Zbl 1462.35187
[25] Roubíček, T., Adhesive contact of visco-elastic bodies and defect measures arising by vanishing viscosity, SIAM J. Math. Anal., 45, 101-126 (2013) · Zbl 1264.35131 · doi:10.1137/12088286X
[26] Scilla, G.; Solombrino, F., Multiscale analysis of singularly perturbed finite dimensional gradient flows: the minimizing movement approach, Nonlinearity, 31, 5036-5074 (2018) · Zbl 1414.34046 · doi:10.1088/1361-6544/aad6ac
[27] Scilla, G.; Solombrino, F., A variational approach to the quasistatic limit of viscous dynamic evolutions in finite dimension, J. Differ. Equ., 267, 6216-6264 (2019) · Zbl 1432.34078 · doi:10.1016/j.jde.2019.06.018
[28] Slepyan, LI, Models and Phenomena in Fracture Mechanics (2002), New York: Springer, New York · Zbl 1047.74001
[29] Zanini, C., Singular perturbations of finite dimensional gradient flows, Discrete Contin. Dyn. Syst. Ser. A, 18, 657-675 (2007) · Zbl 1154.34024 · doi:10.3934/dcds.2007.18.657
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.