×

Long-time behaviour of the solution of Maxwell’s equations in dissipative generalized Lorentz materials. I: A frequency-dependent Lyapunov function approach. (English) Zbl 1525.35213

The authors aim to quantify the loss in dissipative media through a generalized Drude-Lorentz model. They consider the long-time decay rate of the electromagnetic energy and show, using Lyapunov estimates, that this decay is polynomial in time. Frequency dependent Lyapunov functions are introduced which can distinguish between low and high frequencies. The authors also discuss how to apply their method to bounded domains. Semigroup methods in particular are employed throughout.

MSC:

35Q61 Maxwell equations
35Q60 PDEs in connection with optics and electromagnetic theory
78A60 Lasers, masers, optical bistability, nonlinear optics
78A35 Motion of charged particles
35L45 Initial value problems for first-order hyperbolic systems
37C75 Stability theory for smooth dynamical systems
34D20 Stability of solutions to ordinary differential equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs

References:

[1] Assous, F.; Ciarlet, P.; Labrunie, S., Mathematical Foundations of Computational Electromagnetism (2018), New York: Springer, New York · Zbl 1452.78001 · doi:10.1007/978-3-319-70842-3
[2] Bernland, A.; Luger, A.; Gustafsson, M., Sum rules and constraints on passive systems, J. Phys. A Math. Theor., 44, 14 (2011) · Zbl 1222.30031 · doi:10.1088/1751-8113/44/14/145205
[3] Berg, C.: Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity. In: Positive Definite Functions: From Schoenberg to Space-Time Challenges, pp. 15-45 (2008)
[4] Brezis, H., Functional Analysis. Sobolev Spaces and Partial Differential Equations (2011), New York: Springer, New York · Zbl 1220.46002 · doi:10.1007/978-0-387-70914-7
[5] Borichev, A.; Tomilov, Y., Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347, 2, 455-478 (2010) · Zbl 1185.47044 · doi:10.1007/s00208-009-0439-0
[6] Cassier, M.; Joly, P.; Kachanovska, M., Mathematical models for dispersive electromagnetic waves: an overview, Comput. Math. Appl., 74, 11, 2639-2928 (2017) · Zbl 1397.78004 · doi:10.1016/j.camwa.2017.07.025
[7] Cassier, M.; Milton, GW, Bounds on Herglotz functions and fundamental limits of broadband passive quasistatic cloaking, J. Math. Phys., 58, 7 (2017) · Zbl 1375.30046 · doi:10.1063/1.4989990
[8] Cessenat, M., Mathematical Methods in Electromagnetism: Linear Theory and Applications (1996), Singapore: World Scientific, Singapore · Zbl 0917.65099
[9] Conti, M.; Gatti, S.; Pata, V., Uniform decay properties of linear Volterra integro-differential equations, Math. Models Methods Appl. Sci., 18, 1, 21-45 (2008) · Zbl 1152.35318 · doi:10.1142/S0218202508002590
[10] Dafermos, C., Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37, 297-308 (1970) · Zbl 0214.24503 · doi:10.1007/BF00251609
[11] Danese, V.; Geredeli, PG; Pata, V., Exponential attractors for abstract equations with memory and applications to viscoelasticity, Discrete Contin. Dyn. Syst., 35, 7, 2881-2904 (2015) · Zbl 1336.35077 · doi:10.3934/dcds.2015.35.2881
[12] Dautray, R.; Lions, J-L, Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications (1990), New York: Springer, New York · Zbl 0766.47001
[13] Dautray, R.; Lions, J-L, Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I (1999), New York: Springer, New York
[14] Fabrizio, M.; Morro, F., Mathematical Problems of Linear Viscoelasticity. SIAM Studies in Applied Mathematics (1987), Philadelphia: SIAM, Philadelphia
[15] Fabrizio, M.; Morro, F., Thermodynamics of electromagnetic isothermal systems with memory, J. Non-Equilib. Thermodyn., 22, 110-128 (1997) · Zbl 0889.73004 · doi:10.1515/jnet.1997.22.2.110
[16] Figotin, A.; Schenker, JH, Spectral theory of time dispersive and dissipative systems, J. Stat. Phys., 118, 1, 199-263 (2005) · Zbl 1130.82021 · doi:10.1007/s10955-004-8783-7
[17] Gralak, B.; Tip, A., Macroscopic Maxwell’s equations and negative index materials, J. Math. Phys., 51, 5 (2010) · Zbl 1310.78004 · doi:10.1063/1.3374670
[18] Hanyga, A.; Seredyńska, M., On a mathematical framework for the constitutive equations of anisotropic dielectric relaxation, J. Stat. Phys., 131, 2, 269-303 (2008) · Zbl 1151.78002 · doi:10.1007/s10955-008-9501-7
[19] Jackson, JD, Classical Electrodynamics (1999), New York: Wiley, New York · Zbl 0920.00012
[20] Li, J., Unified analysis of leap-frog methods for solving time-domain Maxwell’s equations in dispersive media, J. Sci. Comput., 47, 1, 1-26 (2011) · Zbl 1230.78030 · doi:10.1007/s10915-010-9417-7
[21] Li, J.; Huang, Y., Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials. Springer Series in Computational Mathematics (2013), Heidelberg: Springer, Heidelberg · Zbl 1304.78002
[22] Rivera, J.E., Muñoz, N.M., Grazia, V.E.: Asymptotic behaviour of the energy for electromagnetic systems with memory. Math. Methods Appl. Sci. 27(7), 819-841 (2004) · Zbl 1054.35103
[23] Nicaise, S., Stabilization and asymptotic behavior of dispersive medium models, Syst. Control Lett., 61, 5, 638-648 (2012) · Zbl 1250.93109 · doi:10.1016/j.sysconle.2012.03.001
[24] Nicaise, S.; Pignotti, C., Asymptotic behavior of dispersive electromagnetic waves in bounded domains, Z. Angew. Math. Phys., 71, 3, 76 (2020) · Zbl 1437.35087 · doi:10.1007/s00033-020-01297-6
[25] Nicaise, S., Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations, Math. Control Relat. Fields, 13, 265-302 (2022) · Zbl 1517.35031 · doi:10.3934/mcrf.2021057
[26] Schilling, R.; Song, R.; Vondracek, Z., Bernstein Functions, Theory and Applications (2010), Berlin: De Gruyter, Berlin · Zbl 1197.33002
[27] Welters, AT; Avniel, Y.; Johnson, SG, Speed-of-light limitations in passive linear media, Phys. Rev. A, 90, 2 (2014) · doi:10.1103/PhysRevA.90.023847
[28] Zemanian, AH, Realizability Theory for Continuous Linear Systems (1972), North Chelmsford: Courier Corporation, North Chelmsford · Zbl 0293.93007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.