×

Numerical solution of ideal MHD equilibrium via radial basis functions collocation and moving least squares approximation methods. (English) Zbl 1403.76148

Summary: In this study, two different meshfree methods consisting of the Radial Basis Functions (RBFs) and the Moving Least Square Method (MLS) are applied to solve the Grad-Shafranov (GS) equation for the axisymmetric equilibrium of plasma in the tokamak. The validity and the effectiveness of the proposed schemes are studied by several test problems through absolute and Root Mean Squared (RMS) errors. Although, during the past few years, a meshfree method is normally applied in magnetohydrodynamic (MHD) studies to the numerical solution of partial differential equations (PDEs) but to the best of our knowledge, its application in MHD equilibrium of the tokamak plasma investigations is rare. The future more extensive studies regarding this numerical method would definitely have a significant impact on improving tokamak numerical tools.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI

References:

[1] Grad H, Rubin H, editors. Peaceful uses of atomic energy conference proceedings, vol. 31 of 190. United Nation; 1958.
[2] Shafranov, V. D., On magnetohydrodynamical equilibrium configurations, Sov J Exp Theor Phys, 6, 545-554, (1958) · Zbl 0081.21801
[3] Lust, R.; Schluter, A., Axial symmetrische magnetohydrodynamische gleichgewichtskonfigurationen, Z Nat, 12a, 850-854, (1957) · Zbl 0077.41605
[4] Callen, J. D.; Dory, R. A., Magnetohydrodynamic equilibria in sharply curved axisymmetric devices, Phys Fluids, 15, 1523-1528, (1972)
[5] Suzuki, Y., Free-boundary MHD-equilibria in axisymmetric tori, Nucl Fusion, 14, 345-352, (1974)
[6] Marder, H.; Weitzner, B., A bifurcation problem in E-layer equilibria, Plasma Phys, 12, 435-445, (1970) · Zbl 0195.29002
[7] Cenacchi, G.; Galvao, R.; Taroni, A., Numerical computation of axisymmetric MHD-equilibria without conducting shell, Nucl Fusion, 16, 457-464, (1976)
[8] Helton, F. J.; Wang, T. S., MHD equilibrium in non-circular tokamaks with field-shaping coil systems, Nucl Fusion, 18, 1523-1533, (1978)
[9] Johnson, J. L.; Dalhed, H. E.; Greene, J. M.; Grimm, R. C.; Hsieh, Y. Y.; Jardin, S. C., Numerical determination of axisymmetric toroidal magnetohydrodynamic equilibria, J Comput Phys, 32, 212-234, (1979) · Zbl 0411.76098
[10] Ling, K. M.; Jardin, S. C., The Princeton spectral equilibrium codepsec, J Comput Phys, 58, 300-335, (1985) · Zbl 0582.76123
[11] Jardin, S., Computational methods in plasma physics, (2010), CRC Press Boca Raton, USA · Zbl 1198.76002
[12] Lao, L. L.; Hirshman, S. P.; Wieland, R. M., Variational moment solutions to the Grad-Shafranov equation, Phys Fluids, 24, 1431-1441, (1981) · Zbl 0476.76127
[13] Semenzato, S.; Gruber, R.; Zehrfeld, H. P., Computation of symmetric ideal MHD flow equlibria, Comput Phys Rep, 1, 389-425, (1984)
[14] Kerner, W.; Jandl, O., Axisymmetric MHD equilibria with flow, Comput Phys Rep, 31, 269-285, (1984)
[15] Gruber, R.; Iacono, R.; Semenzato, S.; Zehrfeld, H. P., Finite element methods to calculate ideal magnetohydrodynamic flow equilibria in tokamaks, Comput Methods Appl, 52, 675-682, (1985) · Zbl 0542.76164
[16] Lutjens, H.; Bondeson, A.; Roy, A., Axisymmetric MHD equilibrium solver with bicubichermite elements, Comput Phys Commun, 69, 287-298, (1992)
[17] Ludwig, G. O., Direct variational solutions of the tokamak equilibrium problem, Plasma Phys Control Fusion, 39, 2021-2037, (1997)
[18] Blum, J.; lefoll, J.; Thooris, B., The self-consistent equilibrium and diffusion code SCED, Comput Phys Commun, 24, 235-254, (1981)
[19] Blum, J.; Boulbe, C.; Faugeras, B., Reconstruction of the equilibrium of the plasma in a tokamak and identification of the current density profile in real time, J Comput Phys, 231, 960-980, (2012) · Zbl 1382.76295
[20] Itagaki, M.; Fukunaga, T., Boundary element modelling to solve the Grad-Shafranov equation as an axisymmetric problem, Eng Anal Bound Elem, 30, 9, 746-757, (2006) · Zbl 1195.76284
[21] Itagaki, M.; Shimoda, H., Hyper singular boundary element formulation for the Grad-Shafranov equation as an axisymmetric problem, Eng Anal Bound Elem, 33, 845-857, (2009) · Zbl 1244.76047
[22] Aydin, S.; Tezer-Sezgin, M., Numerical solution of Grad-Shafranov equation for the distribution of magnetic flux in nuclear fusion devices, Turk J Eng Sci, 32, 5, 265-275, (2008)
[23] Dini, F.; Khorasani, S.; Amrollahi, R., Green function of axisymmetric magnetostatics, Iran J Sci Technol, 28, 197-204, (2004) · Zbl 1122.78302
[24] Feneberg, W.; Lackner, K., Multipole tokamak equilibria, Nucl Fusion, 13, 549-556, (1973)
[25] Pataki, A.; Cerfon, A. J.; Freidberg, J. P.; Greengard, L.; Neil, M. O., A fast, high-order solver for the Grad-Shafranov equation, J Comput Phys, 243, 28-45, (2013) · Zbl 1349.76925
[26] Goedbloed, J. P., Conformal mapping methods in two-dimensional magnetohydrodynamics, Phys Commun, 24, 311-321, (1981)
[27] Takeda, T.; Tokuda, S., Computation of MHD equilibrium of tokamak plasma, J Comput Phys, 93, 1-107, (1991) · Zbl 0716.76086
[28] Imazawa, R.; Kawano, Y.; Itami, K., Meshless method for solving fixed boundary problem of plasma equilibrium, Comput Phys, 292, 208-214, (2015) · Zbl 1349.76614
[29] Nath, D.; Kalra, M. S., Solution of Grad-Shafranov equation by the method of fundamental solutions, J Plasma Phys, 80, 477-494, (2014)
[30] Nath, D.; Kalra, M.; Munshi, P., Computation of fixed boundary tokamak equilibria using a method based on approximate particular solutions, Comput Math Appl, 70, 1220-1233, (2015) · Zbl 1443.78014
[31] Cerfon AJ. Analytic calculations of MHD equilibria and of MHD stability boundaries in fusion plasmas [Ph.D. thesis]. Massachusetts Institute of Technology; 2010.
[32] Colaço MJ, Dulikravich GS, Orlande HR, Magnetohydrodynamic simulations using radial basis functions. Int J Heat Mass Transfer 52 (2009) 5932-5939. · Zbl 1177.76459
[33] Sarra, S. A., A local radial basis function method for advection-diffusion reaction equations on complexly shaped domains, Appl Math Comput, 218, 9853-9865, (2012) · Zbl 1245.65144
[34] Liu, G.; Gu, Y., An introduction to meshfree methods and their programming, (2005), Springer Science and Business Media Dordrecht
[35] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method, Comput Appl Math, 280, 14-36, (2015) · Zbl 1305.65211
[36] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations, Eng Anal Bound Elem, 50, 412-434, (2015) · Zbl 1403.65082
[37] Dehghan, M.; Shirzadi, M., Numerical solution of stochastic elliptic partial differential equations using the meshless method of radial basis functions, Eng Anal Bound Elem, 50, 291-303, (2015) · Zbl 1403.65152
[38] Kansa, E.; Aldredge, R. C.; Ling, L., Numerical simulation of two-dimensional combustion using meshfree methods, Eng Anal Bound Elem, 33, 940-950, (2009) · Zbl 1244.76075
[39] gu, Y. T.; Zhuang, P.; Liu, Q., An advanced meshless method for time fractional diffusion equation, Int J Comput Methods, 8, 653-665, (2011) · Zbl 1245.65133
[40] Bouhamidi, A.; Hached, M.; Jbilou, K., A meshless RBF method for computing a numerical solution of unsteady Burgers-type equations, Comput Math Appl, 68, 238-256, (2014) · Zbl 1369.65125
[41] Fries, T.; Matthies, H., Classification and overview of meshfree methods, (2003), Technical University Braunschweig Brunswick
[42] Kansa, E., Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics. II solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput Math Appl, 19, 89, 147-161, (1990) · Zbl 0850.76048
[43] Chen, W.; Fu, Z.; Chen, C., Recent advances in radial basis function collocation methods, (2013), Springer Berlin, Paperback. New. SKU: MM-21392066; EAN: 9783642395710
[44] Fasshauer, G. E.; Zhang, J. G., On choosing “optimal” shape parameters for RBF approximation, Numer Algorithm, 45, 345-368, (2007) · Zbl 1127.65009
[45] Yoon, J., \(l_p \operatorname{-error}\) estimates for “shifted” surface spline interpolation on Sobolev space, Math Comput, 72, 243, 1349-1367, (2003) · Zbl 1017.41003
[46] Shepard D, editor. The two-dimensional interpolation function for irregularly-spaced data. In: ACM 23rd national conference. New York: ACM Press; 1968.
[47] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math Comput, 37, 141-158, (1981) · Zbl 0469.41005
[48] Cheng, Y. C.R., Error estimates for the finite point method, Appl Numer Math, 58, 884-898, (2008) · Zbl 1145.65086
[49] Solov׳ev, L. S., The theory of hydromagnetic stability of toroidal plasma configuration, Zh Eksp Teor, 53, 626-643, (1967) · Zbl 0172.57401
[50] Cerfon, A. J.; Freidberg, J. P., “one size fits all” analytic solutions to the Grad-Shafranov equation, Phys Plasmas, 17, 032502, (2010)
[51] Aymar, R.; Barabaschi, P.; Shimomura, Y., The ITER design, Plasma Phys Contrib F, 44, 519-565, (2002)
[52] Ono, M.; Kaye, S.; Peng, Y.; Barnes, G.; Blanchard, W.; Carter, M., Exploration of spherical torus physics in the NSTX device, Nucl Fusion, 40, 557-561, (2000)
[53] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., Numerical solution of system of N-coupled nonlinear schrodinger equations via two variants of the meshless local Petrov-Galerkin (MLPG) method, Comput Model Eng Sci, CMES, 100, 5, 399-444, (2014) · Zbl 1357.65187
[54] Leuer JA, Schaffer MJ, Parks PB, Brown MR, editors. Calculation of free boundary SSX doublet equilibria using the finite element method. In: 43rd annual meeting of the APS, Long Beach, CA, vol. 31 of GP1.079; 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.