×

Fractional calculus of thermoelastic \(p\)-waves reflection under influence of gravity and electromagnetic fields. (English) Zbl 1482.74099

Summary: In this paper, we discussed the longitudinal harmonic waves reflection from a solid elastic half-space with electromagnetic and gravity fields influence, considering a fractional order via fractional exponential function method. The clarifications are required for the reflection amplitudes ratios (i.e. the ratios between the reflected waves amplitude and the incident waves amplitude). The results obtained were calculated analytically and displayed by graphs to show the physical meaning of the phenomenon. A comparison has been made between the fractional and integer derivatives. The results of this paper demonstrate the rigor and effectiveness of the considered fractional technique.

MSC:

74J20 Wave scattering in solid mechanics
74F05 Thermal effects in solid mechanics
74F15 Electromagnetic effects in solid mechanics
74S40 Applications of fractional calculus in solid mechanics
78A40 Waves and radiation in optics and electromagnetic theory
Full Text: DOI

References:

[1] Caputo, M. and Mainardi, F. A., A new dissipation model based on memory mechanism, Pure Appl. Geophys.91 (1971) 134-147. · Zbl 1213.74005
[2] Caputo, M. and Mainardi, F. A., Linear models of dissipation in an elastic solid, Riv. Nuovo Cimento1 (1971) 161-198.
[3] Caputo, M., Vibrations of an infinite viscoelastic layer with a dissipative memory, J. Acoust. Soc. Am.56 (1974) 897-904. · Zbl 0285.73031
[4] Rabotnov, Y. N., Creep of Structural Elements (Nauka, Moscow, 1966). · Zbl 0152.42905
[5] Mainardi, F., Applications of fractional calculus in mechanics, in Transforms Method and Special Functions (Bulgarian Academy of Sciences, Sofia, 1998), pp. 309-334. · Zbl 1113.26303
[6] Kimmich, R., Strange kinetics, porous media and NMR, J. Chem. Phys.284 (2002) 253-285.
[7] Povstenko, Y. Z., Fractional heat conduction equation and associated thermal stress, J. Therm. Stress.28 (2005) 83-102.
[8] Caputo, M., Linear model of dissipation whose \(Q\) is almost frequency independent — II Geophysical, Roy. Astron. Soc.13 (1967) 529-539.
[9] Youssef, H., Theory of fractional order generalized thermo-elasticity, J. Heat Transf.132 (2010) 1-7.
[10] Youssef, H. and Al-Lehaibi, E., Fractional order generalized thermo-elastic half space subjected to ramp type heating, Mech. Res. Commun.37 (2010) 448-452. · Zbl 1272.74143
[11] Sherief, H. H., El-Sayed, A. and El-Latief, A., Fractional order theory of thermo-elasticity, Int. J. Solids Struct.47 (2010) 269-275. · Zbl 1183.74051
[12] Ezzat, M. A. and Fayik, M. A., Fractional order theory of thermo-elastic diffusion, J. Therm. Stress.34 (2011) 851-872.
[13] Ezzat, M. A. and El-Karamany, A. S., Fractional order theory of a perfect conducting thermo-elastic medium, Can. J. Phys.89 (2011) 311-318.
[14] Ezzat, M. A. and El-Karamany, A. S., Theory of fractional order in electro-thermo-elasticity, Eur. J. Mech. — A/Solids30 (2011) 491-500. · Zbl 1278.74036
[15] Bachher, M., Sarkar, N. and Lahiri, A., Generalized thermo-elastic infinite medium with voids subjected to an instantaneous heat sources with fractional derivative heat transfer, Int. J. Mech. Sci.89 (2014) 84-91.
[16] Bachher, M., Sarkar, N. and Lahiri, A., Fractional order thermo-elastic interactions in an infinite voids material due to distributed time-dependent heat sources, Meccanica50 (2015) 2167-2178. · Zbl 1325.74035
[17] Kaliski, S. and Nowacki, W., Combined elastic and electro-magnetic waves produced by thermal shock in the case of a medium of finite electric conductivity, Int. J. Eng. Sci.1 (1963) 163-175.
[18] Massalas, C. and Dalamangas, A., Coupled magneto-thermo-elastic problem in elastic half-space having finite conductivity, Int. J. Eng. Sci.21 (1983) 991-999. · Zbl 0519.73092
[19] Paria, G., On magneto-thermo-elastic plane waves, Math. Proc. Cambridge Philos. Soc.58 (1962) 527-531.
[20] Paria, G., Magneto-elasticity and magneto-thermo-elasticity, Adv. Appl. Mech.10 (1967) 73-112.
[21] Ezzat, M. A. and Youssef, H., Generalized magneto-thermo-elasticity in a perfectly conducting medium, Int. J. Solids Struct.42 (2005) 6319-6334. · Zbl 1119.74380
[22] Ezzat, M. A. and Youssef, H., Generation of generalized magneto-thermo-elastic waves by thermal shock in a half-space of finite conductivity, Ital. J. Pure Appl. Math.19 (2005) 9-26. · Zbl 1169.74025
[23] Youssef, H., Generalized magneto-thermo-elasticity in a conducting medium with variable material properties, Appl. Math. Comput.173 (2006) 822-833. · Zbl 1087.74029
[24] Baksi, A., Bera, R. K. and Debnath, L., A study of magneto-thermo-elastic problems with thermal relaxation and heat sources in a three-dimensional infinite rotating elastic medium, Int. J. Eng. Sci.43 (2005) 1419-1434. · Zbl 1211.74059
[25] Roy, S. K. Choudhury and Debnath, L., Magneto-thermo-elastic plane waves in rotating media, Int. J. Eng. Sci.21 (1983) 155-163. · Zbl 0501.73011
[26] Roy, S. K. Choudhury and Debnath, L., Magneto-thermo-elastic plane waves in infinite rotating media, J. Appl. Mech.50 (1983) 283-287. · Zbl 0554.73090
[27] Roy, S. K. Choudhury and Chattopadhyay, M., Magneto-viscoelastic plane waves in rotating media in the generalized thermo-elasticity II, Int. J. Math. Math. Sci.11 (2005) 1819-1834. · Zbl 1159.74341
[28] Roy, S. K. Choudhury and Chattopadhyay, M., Magneto-elastic plane waves in rotating media in thermo-elasticity of type II (G-N model), Int. J. Math. Math. Sci.71 (2004) 3917-3929. · Zbl 1126.74376
[29] Akbarzadeh, A. H., Babaei, M. H. and Chen, Z. T., Thermo piezoelectric analysis of a functionally graded piezoelectric medium, Int. J. Appl. Mech.3 (2011) 47-68.
[30] Brischetto, S. and Carrera, E., Thermomechanical effect in vibration analysis of one-layered and two-layered plates, Int. J. Appl. Mech.3 (2011) 161-185.
[31] Xiong, Q. L. and Tian, X. G., Transient magneto-thermo-elastic response for a semi-infinite body with voids and variable material properties during thermal shock, Int. J. Appl. Mech.3 (2011) 891-902.
[32] Roy, S. K. Choudhury, Magneto-thermoelastic plane waves in infinite rotating media, Int. J. Eng. Sci.22 (1984) 519-530. · Zbl 0543.73132
[33] Othman, M. I. A., Zidan, M. E. M. and Hilal, M. I. M., The influence of gravitational field and rotation on thermo-elastic solid with voids under Green-Naghdi theory, J. Phys.2 (2013) 22-34.
[34] Othman, M. I. A., Zidan, M. E. M. and Hilal, M. I. M., Effect of rotation on thermo-elastic material with voids and temperature dependent properties of type III, J. Thermo-Elast.1 (2013) 1-11.
[35] Sarkar, N. and Lahiri, A., The effect of gravity field on the plane waves in a fiber-reinforced two-temperature magneto-thermo-elastic medium under Lord-Shulman theory, J. Therm. Stress.36 (2013) 895-914.
[36] Sarkar, N., Analysis of magneto-thermo-elastic response in a fiber-reinforced elastic solid due to hydrostatic initial stress and gravity field, J. Therm. Stress.37 (2014) 1-18.
[37] A. Luchko and R. Groneflo, The initial value problem for some fractional differential equations with the Caputo derivative, Preprint series A0-98, Fachbreich Mathematik und Informatik, Freic Universitat, Berlin (1997).
[38] Oldham, K. B. and Spanier, J., The Fractional Calculus (Academic Press, New York, 1974). · Zbl 0292.26011
[39] Podlubny, I., Fractional Differential Equations (Academic Press, New York, 1999). · Zbl 0924.34008
[40] Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fractals Calc. Appl. Anal.5 (2002) 367-386. · Zbl 1042.26003
[41] Mohamed, I. A. Othman, Abo-Dahab, S. M. and Ohoud, N. S. Alsebaey, Reflection of plane waves from a rotating thermoelastic medium with two-temperature under the influence of gravity with three theories, J. Comput. Theor. Nanosci.13(11) (2016) 8575-8582.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.