×

An accurate adaptive solver for surface-tension-driven interfacial flows. (English) Zbl 1280.76020

Summary: A method combining an adaptive quad/octree spatial discretisation, geometrical Volume-Of-Fluid interface representation, balanced-force continuum-surface-force surface-tension formulation and height-function curvature estimation is presented. The extension of these methods to the quad/octree discretisation allows adaptive variable resolution along the interface and is described in detail. The method is shown to recover exact equilibrium (to machine accuracy) between surface-tension and pressure gradient in the case of a stationary droplet, irrespective of viscosity and spatial resolution. Accurate solutions are obtained for the classical test case of capillary wave oscillations. An application to the capillary breakup of a jet of water in air further illustrates the accuracy and efficiency of the method. The source code of the implementation is freely available as part of the Gerris flow solver.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
76D45 Capillarity (surface tension) for incompressible viscous fluids

References:

[1] Hirt, C.; Nichols, B., Volume of fluid method for the dynamics of free boundaries, Journal of Computational Physics, 39, 1, 201-225 (1981) · Zbl 0462.76020
[2] Li, J., Calcul d’interface affine par morceaux, Comptes rendus de l’Académie des sciences. Série II, Mécanique, Physique, Chimie, Astronomie, 320, 8, 391-396 (1995) · Zbl 0826.76065
[3] Rider, W.; Kothe, D., Reconstructing volume tracking, Journal of Computational Physics, 141, 2, 112-152 (1998) · Zbl 0933.76069
[4] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annual Review of Fluid Mechanics, 31, 1, 567-603 (1999)
[5] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational Physics, 114, 1, 146-159 (1994) · Zbl 0808.76077
[6] Sussman, M.; Almgren, A.; Bell, J.; Colella, P.; Howell, L.; Welcome, M., An adaptive level set approach for incompressible two-phase flows, Journal of Computational Physics, 148, 1, 81-124 (1999) · Zbl 0930.76068
[7] Sochnikov, V.; Efrima, S., Level set calculations of the evolution of boundaries on a dynamically adaptive grid, International Journal for Numerical Methods in Engineering, 56, 1913-1929 (2003) · Zbl 1031.65100
[8] Kohno, H.; Tanahashi, T., Numerical analysis of moving interfaces using a level set method coupled with adaptive mesh refinement, International Journal for Numerical Methods in Fluids, 45, 921-944 (2004) · Zbl 1085.76056
[9] Zheng, X.; Lowengrub, J.; Anderson, A.; Cristini, V., Adaptive unstructured volume remeshing - II: Application to two- and three-dimensional level-set simulations of multiphase flow, Journal of Computational Physics, 208, 2, 626-650 (2005) · Zbl 1075.65120
[10] Liu, H.; Krishnan, S.; Marella, S.; Udaykumar, H., Sharp interface cartesian grid method II: A technique for simulating droplet interactions with surfaces of arbitrary shape, Journal of Computational Physics, 210, 1, 32-54 (2005) · Zbl 1154.76358
[11] Marchandise, E.; Remacle, J.-F., A stabilized finite element method using a discontinuous level set approach for solving two phase incompressible flows, Journal of Computational Physics, 219, 2, 780-800 (2006) · Zbl 1189.76343
[12] Marchandise, E.; Geuzaine, P.; Chevaugeon, N.; Remacle, J.-F., A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics, Journal of Computational Physics, 225, 1, 949-974 (2007) · Zbl 1118.76040
[13] Desjardins, O.; Moureau, V.; Pitsch, H., An accurate conservative level set/ghost fluid method for simulating turbulent atomization, Journal of Computational Physics, 227, 18, 8395-8416 (2008) · Zbl 1256.76051
[14] Fyfe, D.; Oran, E.; Fritts, M., Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh, Journal of Computational Physics, 76, 2, 349-384 (1988) · Zbl 0639.76043
[15] Popinet, S.; Zaleski, S., A front-tracking algorithm for accurate representation of surface tension, International Journal for Numerical Methods in Fluids, 30, 6, 775-793 (1999) · Zbl 0940.76047
[16] Shin, S.; Abdel-Khalik, S.; Daru, V.; Juric, D., Accurate representation of surface tension using the level contour reconstruction method, Journal of Computational Physics, 203, 2, 493-516 (2005) · Zbl 1143.76561
[17] Dai, M.; Schmidt, D., Adaptive tetrahedral meshing in free-surface flow, Journal of Computational Physics, 208, 1, 228-252 (2005) · Zbl 1114.76333
[18] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling merging and fragmentation in multiphase flows with SURFER, Journal of Computational Physics, 113, 1, 134-147 (1994) · Zbl 0809.76064
[19] Gueyffier, D.; Nadim, A.; Li, J.; Scardovelli, R.; Zaleski, S., Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows, Journal of Computational Physics, 152, 423-456 (1998) · Zbl 0954.76063
[20] Kang, M.; Fedkiw, R.; Liu, X., A boundary condition capturing method for multiphase incompressible flow, Journal of Scientific Computing, 15, 3, 323-360 (2000) · Zbl 1049.76046
[21] Renardy, Y.; Renardy, M., PROST - a parabolic reconstruction of surface tension for the volume-of-fluid method, Journal of Computational Physics, 183, 2, 400-421 (2002) · Zbl 1057.76569
[22] Harvie, D.; Davidson, M.; Rudman, M., An analysis of parasitic current generation in volume of fluid simulations, Applied Mathematical Modelling, 30, 10, 1056-1066 (2006) · Zbl 1163.76401
[23] Francois, M.; Cummins, S.; Dendy, E.; Kothe, D.; Sicilian, J.; Williams, M., A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, Journal of Computational Physics, 213, 1, 141-173 (2006) · Zbl 1137.76465
[24] Ginzburg, I.; Wittum, G., Two-phase flows on interface refined grids modeled with VOF, staggered finite volumes, and spline interpolants, Journal of Computational Physics, 166, 2, 302-335 (2001) · Zbl 1030.76035
[25] Cummins, S.; Francois, M.; Kothe, D., Estimating curvature from volume fractions, Computers and Structures, 83, 6-7, 425-434 (2005)
[26] Sussman, M.; Ohta, M., Improvements for calculating two-phase bubble and drop motion using an adaptive sharp interface method, Fluid Dynamics & Materials Processing, 3, 1, 21-36 (2007) · Zbl 1153.76436
[27] Almgren, A.; Bell, J.; Colella, P.; Howell, L.; Welcome, M., A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations, Journal of Computational Physics, 142, 1, 1-46 (1998) · Zbl 0933.76055
[28] Jeong, J.; Yang, D., Finite element analysis of transient fluid flow with free surface using VOF (volume-of-fluid) method and adaptive grid, International Journal for Numerical Methods in Fluids, 26, 10, 1127-1154 (1998) · Zbl 0927.76050
[29] Sussman, M., A parallelized adaptive algorithm for multiphase flows in general geometries, Computers and Structures, 83, 6-7, 435-444 (2005)
[30] Greaves, D., A quadtree adaptive method for simulating fluid flows with moving interfaces, Journal of Computational Physics, 194, 1, 35-56 (2004) · Zbl 1136.76408
[31] Theodorakakos, A.; Bergeles, G., Simulation of sharp gas-liquid interface using VOF method and adaptive grid local refinement around the interface, International Journal for Numerical Methods in Fluids, 45, 4, 421-439 (2004) · Zbl 1085.76551
[32] Losasso, F.; Fedkiw, R.; Osher, S., Spatially adaptive techniques for level set methods and incompressible flow, Computers and Fluids, 35, 457-462 (2006)
[33] Min, C.; Gibou, F., A second order accurate level set method on non-graded adaptive Cartesian grids, Journal of Computational Physics, 225, 1, 300-321 (2007) · Zbl 1122.65077
[34] Compère, G.; Marchandise, E.; Remacle, J.-F., Transient adaptivity applied to two-phase incompressible flows, Journal of Computational Physics, 227, 3, 1923-1942 (2008) · Zbl 1135.76031
[35] Popinet, S., Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, Journal of Computational Physics, 190, 2, 572-600 (2003) · Zbl 1076.76002
[36] Wang, J.; Borthwick, A.; Taylor, R., Finite-volume-type VOF method on dynamically adaptive quadtree grids, International Journal for Numerical Methods in Fluids, 45, 5, 485-508 (2004) · Zbl 1085.76537
[37] Losasso, F.; Gibou, F.; Fedkiw, R., Simulating water and smoke with an octree data structure, ACM Transactions on Graphics (TOG), 23, 3, 457-462 (2004)
[38] Greaves, D., Simulation of viscous water column collapse using adapting hierarchical grids, International Journal for Numerical Methods in Fluids, 50, 6, 693-711 (2006) · Zbl 1086.76047
[39] Nikolopoulos, N.; Theodorakakos, A.; Bergeles, G., Three-dimensional numerical investigation of a droplet impinging normally onto a wall film, Journal of Computational Physics, 225, 1, 322-341 (2007) · Zbl 1119.76013
[40] Herrmann, M., A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids, Journal of Computational Physics, 227, 4, 2674-2706 (2008) · Zbl 1388.76252
[41] Malik, M.; Sheung-Chi Fan, E.; Bussmann, M., Adaptive VOF with curvature-based refinement, International Journal for Numerical Methods in Fluids, 55, 7, 693-712 (2007) · Zbl 1127.76048
[42] Rudman, M., Volume-tracking methods for interfacial flows calculations, International Journal for Numerical Methods in Fluids, 24, 7, 671-691 (1997) · Zbl 0889.76069
[43] Sussman, M.; Smith, K.; Hussaini, M.; Ohta, M.; Zhi-Wei, R., A sharp interface method for incompressible two-phase flows, Journal of Computational Physics, 221, 2, 469-505 (2007) · Zbl 1194.76219
[44] S. Popinet, The Gerris Flow Solver, 2007, <http://gfs.sf.net>; S. Popinet, The Gerris Flow Solver, 2007, <http://gfs.sf.net>
[45] S. Popinet, Gerris Test Suite, 2007, <http://gfs.sourceforge.net/tests/tests/index.html>; S. Popinet, Gerris Test Suite, 2007, <http://gfs.sourceforge.net/tests/tests/index.html>
[46] Chorin, A., On the convergence of discrete approximations to the Navier-Stokes equations, Mathematics of Computation, 23, 106, 341-353 (1969) · Zbl 0184.20103
[47] Alcouffe, R.; Brandt, A.; Dendy, J.; Painter, J., The multi-grid method for the diffusion equation with strongly discontinuous coefficients, SIAM Journal on Scientific and Statistical Computing, 2, 430 (1981) · Zbl 0474.76082
[48] O. Tatebe, N. Melson, T. Manteuffel, S. McCormick, The multigrid preconditioned conjugate gradient method, in: Sixth Copper Mountain Conference on Multigrid Methods, NASA, 1993, pp. 621-634.; O. Tatebe, N. Melson, T. Manteuffel, S. McCormick, The multigrid preconditioned conjugate gradient method, in: Sixth Copper Mountain Conference on Multigrid Methods, NASA, 1993, pp. 621-634.
[49] Chan, T.; Wan, W., Robust multigrid methods for nonsmooth coefficient elliptic linear systems, Journal of Computational and Applied Mathematics, 123, 1-2, 323-352 (2000) · Zbl 0966.65099
[50] Bell, J.; Colella, P.; Glaz, H., A second-order projection method for the incompressible Navier-Stokes equations, Journal of Computational Physics, 85, 257-283 (1989) · Zbl 0681.76030
[51] Almgren, A.; Bell, J.; Crutchfield, W., Approximate projection methods: Part I. inviscid analysis, SIAM Journal on Scientific Computing, 22, 4, 1139-1159 (2000) · Zbl 0995.76059
[52] Scardovelli, R.; Zaleski, S., Analytical relations connecting linear interfaces and volume fractions in rectangular grids, Journal of Computational Physics, 164, 1, 228-237 (2000) · Zbl 0993.76067
[53] Scardovelli, R.; Zaleski, S., Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection, International Journal for Numerical Methods in Fluids, 41, 251-274 (2003) · Zbl 1047.76080
[54] Aulisa, E.; Manservisi, S.; Scardovelli, R.; Zaleski, S., Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry, Journal of Computational Physics, 225, 2, 2301-2319 (2007) · Zbl 1118.76048
[55] R. DeBar, Fundamentals of the KRAKEN code, Tech. rep., UCID-17366, California Univ., Livermore (USA), Lawrence Livermore Lab., 1974.; R. DeBar, Fundamentals of the KRAKEN code, Tech. rep., UCID-17366, California Univ., Livermore (USA), Lawrence Livermore Lab., 1974.
[56] Lörstad, D.; Fuchs, L., High-order surface tension VOF-model for 3D bubble flows with high density ratio, Journal of Computational Physics, 200, 1, 153-176 (2004) · Zbl 1288.76083
[57] Zalesak, S., Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics, 31, 3, 335-362 (1979) · Zbl 0416.76002
[58] Ubbink, O.; Issa, R., A method for capturing sharp fluid interfaces on arbitrary meshes, Journal of Computational Physics, 153, 1, 26-50 (1999) · Zbl 0955.76058
[59] W. Noh, P. Woodward, SLIC/simple line interface calculation, in: International Conference on Numerical Methods in Fluid Dynamics, 5th, Enschede, Netherlands, June 28-July 2, 1976.; W. Noh, P. Woodward, SLIC/simple line interface calculation, in: International Conference on Numerical Methods in Fluid Dynamics, 5th, Enschede, Netherlands, June 28-July 2, 1976. · Zbl 0382.76084
[60] Aulisa, E.; Manservisi, S.; Scardovelli, R.; Zaleski, S., A geometrical area-preserving volume-of-fluid method, Journal of Computational Physics, 192, 355-364 (2003) · Zbl 1032.76632
[61] Sussman, M., A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles, Journal of Computational Physics, 187, 1, 110-136 (2003) · Zbl 1047.76085
[62] Brackbill, J.; Kothe, D.; Zemach, C., A continuum method for modeling surface tension, Journal of Computational Physics, 100, 2, 335-354 (1992) · Zbl 0775.76110
[63] Sussman, M.; Puckett, E., A coupled level set and volume of fluid method for computing 3D and axisymmetric incompressible two-phase flows, Journal of Computational Physics, 162, 2, 301-337 (2000) · Zbl 0977.76071
[64] Yang, X.; James, A.; Lowengrub, J.; Zheng, X.; Cristini, V., An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids, Journal of Computational Physics, 217, 2, 364-394 (2006) · Zbl 1160.76377
[65] M. Torrey, L. Cloutman, R. Mjolsness, C. Hirt, NASA-VOF2D: a computer program for incompressible flows with free surfaces, Tech. rep., Los Alamos National Laboratory, 1985.; M. Torrey, L. Cloutman, R. Mjolsness, C. Hirt, NASA-VOF2D: a computer program for incompressible flows with free surfaces, Tech. rep., Los Alamos National Laboratory, 1985.
[66] Gerlach, D.; Tomar, G.; Biswas, G.; Durst, F., Comparison of volume-of-fluid methods for surface tension-dominant two-phase flows, International Journal of Heat and Mass Transfer, 49, 3-4, 740-754 (2006) · Zbl 1189.76363
[67] Lamb, H., Hydrodynamics (1971), Cambridge University Press · JFM 26.0868.02
[68] Prosperetti, A., Motion of two superposed viscous fluids, Physics of Fluids, 24, 1217 (1981) · Zbl 0469.76035
[69] Shi, X.; Brenner, M.; Nagel, S., A cascade of structure in a drop falling from a faucet, Science, 265, 5169, 219-222 (1994) · Zbl 1226.76011
[70] Brenner, M.; Eggers, J.; Joseph, K.; Nagel, S.; Shi, X. D., Breakdown of scaling in droplet fission at high Reynolds number, Physics of Fluids, 9, 6, 1573-1590 (1997)
[71] Eggers, J., Nonlinear dynamics and breakup of free-surface flows, Reviews of Modern Physics, 69, 3, 865-930 (1997) · Zbl 1205.37092
[72] Rayleigh, L., On the instability of a cylinder of viscous liquid under capillary force, Philosophical Magazine, 34, 207, 145-154 (1892) · JFM 24.0972.03
[73] Weber, C., Disintegration of liquid jets, Zeitschrift für Angewandte Mathematik und Mechanik, 11, 2, 136-159 (1931)
[74] Eggers, J., Universal pinching of 3D axisymmetric free-surface flow, Physical Review Letters, 71, 21, 3458-3460 (1993)
[75] Peregrine, D.; Shoker, G.; Symon, A., The bifurcation of liquid bridges, Journal of Fluid Mechanics, 212, 25-39 (1990)
[76] Kowalewski, T., On the separation of droplets from a liquid jet, Fluid Dynamics Research, 17, 121-145 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.