×

High-order adaptive arbitrary-Lagrangian-Eulerian (ALE) simulations of solidification. (English) Zbl 1390.80018

Summary: A high-order-accurate method for simulation of solidification is presented. The solidification front is tracked using a triangular, arbitrary-Lagrangian-Eulerian moving mesh, and a mesh adaption algorithm is used to allow simulations of unsteady problems with large interfacial movement. An improved mesh coarsening algorithm is presented that maintains high quality deforming meshes while reducing the amount of interpolation needed to transfer solutions between meshes. An \(hp\)-finite element method is used to resolve the thermal and flow fields. This is combined with an A-stable diagonally-implicit Runge-Kutta temporal scheme. The method was demonstrated to give a temporal order of accuracy near 3 by comparing to a 1D analytic solution of melting. The spatial accuracy was calculated to be nearly 5th order for an approximation degree, \(p\), equal to 4. Even for this simple case, the mesh adaption algorithm improved the accuracy over a simulation where the mesh only deformed. For a practical demonstration, the algorithm was used to simulate horizontal ribbon growth of single-crystal silicon and was able to resolve solutions where the solid layer thickness decreased by a factor of 20 over the course of the simulation.

MSC:

80M10 Finite element, Galerkin and related methods applied to problems in thermodynamics and heat transfer
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
80A22 Stefan problems, phase changes, etc.
Full Text: DOI

References:

[1] Boettinger, W.; Warren, J.; Beckermann, C.; Karma, A., Phase-field simulation of solidification, Annu Rev Mater Res, 32, 1, 163-194, (2002)
[2] Bonnerot, R.; Jamet, P., Numerical computation of the free boundary for the two-dimensional Stefan problem by space-time finite elements, J Comput Phys, 25, 2, 163-181, (1977) · Zbl 0364.65091
[3] Ettouney, H.; Brown, R., Finite-element methods for steady solidification problems, J Comput Phys, 49, 1, 118-150, (1983) · Zbl 0503.65074
[4] Lynch, D.; Sullivan Jr, J., Heat conservation in deforming element phase change simulation, J Comput Phys, 57, 2, 303-317, (1985) · Zbl 0552.65074
[5] Derby, J.; Brown, R.; Geyling, F.; Jordan, A.; Nikolakopoulou, G., Finite element analysis of a thermal-capillary model for liquid encapsulated czochralski growth, J Electrochem Soc, 132, 470, (1985)
[6] Rønquist, E.; Patera, A., A Legendre spectral element method for the Stefan problem, Int J Numer Methods Eng, 24, 12, 2273-2299, (1987) · Zbl 0632.65126
[7] Weinstein, O.; Brandon, S., Dynamics of partially faceted melt/crystal interfaces I: computational approach and single step-source calculations, J Cryst Growth, 268, 1, 299-319, (2004)
[8] Ghosh, S.; Moorthy, S., Arbitrary Lagrangian-Eulerian finite element model for heat transfer analysis of solidification processes, Numer Heat Transf Part B, 23, 3, 327-350, (1993)
[9] Lan, C.; Liang, M., Multigrid methods for incompressible heat flow problems with an unknown interface, J Comput Phys, 152, 1, 55-77, (1999) · Zbl 0946.76048
[10] Chatterjee, A.; Prasad, V., A full 3-dimensional adaptive finite volume scheme for transport and phase-change processes, part I: formulation and validation, Numer Heat Transf Part A, 37, 8, 801-821, (2000)
[11] Espinosa, F.; Avila, R.; Cervantes, J.; Solorio, F., Numerical simulation of simultaneous freezing-melting problems with natural convection, Nucl Eng Des, 232, 2, 145-155, (2004)
[12] Shu, Y.; Li, B.; Lynn, K., Numerical modeling of internal radiation and solidification in semitransparent melts in magnetic fields, Numer Heat Transf Part A, 45, 10, 957-976, (2004)
[13] Kumar, V.; Durst, F.; Ray, S., Modeling moving-boundary problems of solidification and melting adopting an arbitrary Lagrangian-Eulerian approach, Numer Heat Transf Part B, 49, 4, 299-331, (2006)
[14] Karniadakis, G. E.; Orszag, S. A.; Rönquist, E. M.; Patera, A. T., Spectral element and lattice gas methods for incompressible fluid dynamics, (Gunzburger, M. D.; Nicolaides, R. A., Incompressible computational fluid dynamics: trends and advances, Notes on Numerical Fluid Mechanics, 45, (1993), Cambridge University Press), 203-266 · Zbl 1189.76379
[15] Maday, Y.; Patera, A. T., Spectral element methods for the incompressible Navier-Stokes equations, (Noor, A. K.; Oden, J. T., State-of-the-art surveys on computational mechanics, (1989), The American Society of Mechanical Engineers New York, NY), 71-143 · Zbl 0850.73026
[16] Baker, T. J., Mesh movement and metamorphosis, Eng Comput, 18, 3, 188-198, (2002)
[17] Baker, T. J., Mesh deformation and modification for time dependent problems, Int J Numer Methods Fluids, 43, 747-768, (2003) · Zbl 1032.76665
[18] De Cougny, H.; Shephard, M. S., Parallel refinement and coarsening of tetrahedral meshes, Int J Numer Methods Eng, 46, 7, 1101-1125, (1999) · Zbl 0964.76073
[19] Anderson, A.; Zheng, X.; Cristini, V., Adaptive unstructured volume remeshing-I: the method, J Comput Phys, 208, 2, 616-625, (2005) · Zbl 1075.65119
[20] Dai, M.; Schmidt, D. P., Adaptive tetrahedral meshing in free-surface flow, J Comput Phys, 208, 1, 228-252, (2005) · Zbl 1114.76333
[21] Compere, G.; Remacle, J.-F.; Jansson, J.; Hoffman, J., A mesh adaptation framework for dealing with large deforming meshes, Int J Numer Methods Eng, 82, 7, 843-867, (2010) · Zbl 1188.74093
[22] Wang, L.; Persson, P.-O., A high-order discontinuous Galerkin method with unstructured space-time meshes for two-dimensional compressible flows on domains with large deformations, Comput Fluids, 118, 53-68, (2015) · Zbl 1390.76366
[23] Alauzet, F.; Loseille, A., A decade of progress on anisotropic mesh adaptation for computational fluid dynamics, Comput-Aided Des, 72, 13-39, (2016)
[24] Helenbrook, B. T., A two-fluid spectral element method, Comput Methods Appl Mech Eng, 191, 3-5, 273-294, (2001) · Zbl 0999.76101
[25] Sherwin, S. J.; Karniadakis, G. E., A triangular spectral element method: applications to the incompressible Navier-Stokes equations, Comput Methods App Mech Eng, 123, 189-229, (1995) · Zbl 1075.76621
[26] Dubiner, M., Spectral methods on triangles and other domains, J Sci Comput, 6, 4, 345-390, (1991) · Zbl 0742.76059
[27] Lynch, D. R.; O’Neill, K., Continuously deforming finite elements for the solution of parabolic problems, with and without phase change., Int J Numer Methods Eng, 17, 1, 81-96, (1981) · Zbl 0473.73076
[28] Batina, J., Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aerodynamic analysis, AIAA J, 29, 3, 327-333, (1991)
[29] Venkatakrishnan, V.; Mavriplis, D. J., Implicit method for the computation of unsteady flows on unstructured grids, AIAA, 95-1705, (1995)
[30] Hassan, O.; Probert, E.; Morgan, K., Unstructured mesh procedures for the simulation of three-dimensional transient compressible inviscid flows with moving boundary components, Int J Numer Methods Fluids, 27, 1-4, 41-55, (1998) · Zbl 0905.76046
[31] Farhat, C.; Degand, C.; Koobus, B.; Lesoinne, M., Torsional springs for two-dimensional dynamic unstructured fluid meshes, Comput Methods Appl Mech Eng, 163, 1, 231-245, (1998) · Zbl 0961.76070
[32] Lynch, D. R., Unified approach to simulation on deforming elements with application to phase change problems, J Comput Phys, 47, 387-411, (1982) · Zbl 0486.65063
[33] Tezduyar, T. E.; Behr, M.; Mittal, S.; Johnson, A. A., Computation of unsteady incompressible flows with the stabilized finite element methods-space-time formulations, iterative strategies and massively parallel implementations, (Smolinksi, P., New methods in transient analysis, (1992), ASME New York, NY), 7-24
[34] Baker, T. J., Mesh movement and metamorphosis, Proceedings of the tenth international meshing round table, 387-395, (2001)
[35] Helenbrook, B. T., Mesh deformation using the biharmonic operator, Int J Numer Method Eng, 56, 7, 1007-1021, (2003) · Zbl 1047.76044
[36] Williams, R.; Burrage, K.; Cameron, I.; Kerr, M., A four-stage index 2 diagonally implicit Runge-Kutta method, Appl Numer Math, 40, 40, 415-432, (2002) · Zbl 0993.65088
[37] Gear, C. W., Numerical initial value problems in ordinary differential equations, (1971), Prentice Hall Englewood Cliffs · Zbl 1145.65316
[38] Hairer, E.; Wanner, G., Solving ordinary differential equations II: stiff and differential algebraic problems, (1999), Springer-Verlag New York
[39] Balay S., Buschelman K., Gropp W.D., Kaushik D., Knepley M.G., McInnes L.C., et al. PETSc web page. 2009.; Balay S., Buschelman K., Gropp W.D., Kaushik D., Knepley M.G., McInnes L.C., et al. PETSc web page. 2009.
[40] Balay, S.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G., Petsc users manual, Technical Report, ANL-95/11 - Revision 3.0.0, (2008), Argonne National Laboratory
[41] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern software tools in scientific computing, (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[42] Li, X. S., An overview of superlu: algorithms, implementation, and user interface, Toms, 31, 3, 302-325, (2005) · Zbl 1136.65312
[43] Li, X. S.; Demmel, J. W., Superlu_DIST: a scalable distributed-memory sparse direct solver for unsymmetric linear systems, ACM Trans Math Softw, 29, 2, 110-140, (2003) · Zbl 1068.90591
[44] Löhner, R.; Yang, C., Improved ALE mesh velocities for moving boundaries, Comm Numer Methods Eng, 12, 599-608, (1996) · Zbl 0858.76042
[45] Robertson, I.; Sherwin, S., Free-surface flow simulation using hp/spectral elements, J Comput Phys, 155, 26-53, (1999) · Zbl 0953.76055
[46] Lawson, C. L., Transforming triangulations, Discrete Math, 3, 365-372, (1972) · Zbl 0253.05116
[47] Rebay, S., Efficient unstructured mesh generation by means of Delaunay triangulation and bowyer-Watson algorithm, J Comput Phys, 106, 125-138, (1993) · Zbl 0777.65064
[48] Remacle, J.-F.; Geuzaine, C.; Compère, G.; Helenbrook, B., Adaptive mesh generation and visualization, (Blockle, R.; Shyy, W., Encyclopedia of aerospace engineering, (2010), John Wiley & Sons Ltd. Chichester, UK), 1735-1746
[49] Venditti, D. A.; Darmofal, D. L., Grid adaptation for functional outputs: application to two-dimensional inviscid flows, J Comput Phys, 176, 40-69, (2002) · Zbl 1120.76342
[50] Houston, P.; Senior, B.; Suli, E., hp-discontinuous Galerkin finite element methods for hyperbolic problems: error analysis and adaptivity, Int J Numer Methods Fluids, 40, 1-2, 153-169, (2002) · Zbl 1021.76027
[51] Özışık, N., Boundary value problems of heat conduction, (2002), Dover Publications
[52] Bleil, C., A new method for growing crystal ribbons, J Cryst Growth, 5, 2, 99-104, (1969)
[53] Daggolu, P.; Yeckel, A.; Bleil, C. E.; Derby, J. J., Thermal-capillary analysis of the horizontal ribbon growth of silicon crystals, J Cryst Growth, 355, 1, 129-139, (2012)
[54] Anderson, D., Corner flows, heat transfer, and phase transformation, (1993), Northwestern University, Ph.D. Thesis
[55] Anderson, D.; Davis, S., Fluid flow, heat transfer, and solidification near tri-junctions, J Cryst Growth, 142, 1, 245-252, (1994)
[56] Anderson, D.; Davis, S., Local fluid and heat flow near contact lines, J Fluid Mech, 268, 231-266, (1994) · Zbl 0800.76486
[57] Helenbrook, B. T., Solidification along a wall or free surface with heat removal, J Cryst Growth, 418, 79-85, (2015)
[58] Helenbrook, B. T.; Kellerman, P.; Carlson, F.; Desai, N.; Sun, D., Experimental and numerical investigation of the horizontal ribbon growth process, J Cryst Growth, 453, 163-172, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.