×

Sensitivity kernels in seismic wave propagation: a simplified explanation for the banana-doughnut paradox. (English) Zbl 1507.86006

Summary: Ray theory, a high-frequency approximation to describe wave propagation, has been a cornerstone in seismology for over a hundred years. Despite its simplicity and wide range of applications, some limitations combined with the ever-increasing computational power motivated the development of finite-frequency theory, a better model to describe how the Earth’s inner structure affects seismic waves. Finite-frequency theory has matured a lot in the last decades, and it is now widely applied in many geophysical problems. However, most students and even some experienced researchers face difficulties understanding it. An appropriate theoretical comprehension is paramount to making the most out of the methods a theory underpins, avoiding pushing it beyond its limits, and further developing it. With that problem in mind, this paper shows a simplified formulation of the sensitivity kernels, which are the generalization of rays in the finite-frequency regime. The resultant model, despite its limitations, correctly predicts the main features of finite-frequency theory, including the zero sensitivity in the middle of the travel-time kernels, known as the banana-doughnut paradox, shedding new light on that intriguing phenomenon. The step-by-step derivation and relatively easy equations should be understandable by an undergraduate student with a reasonable knowledge of classical physics and calculus. A Colab Notebook implementing the main formulas accompanies the paper, allowing readers to interact and play with the results.

MSC:

86A15 Seismology (including tsunami modeling), earthquakes
Full Text: DOI

References:

[1] Aki, K.; Christoffersson, A.; Husebye, E. S., Determination of the three-dimensional seismic structure of the lithosphere, J. Geophys. Res., 82, 277-296 (1977) · doi:10.1029/jb082i002p00277
[2] Aki, K.; Lee, W. H K., Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: I. A homogeneous initial model, J. Geophys. Res., 81, 4381-4399 (1976) · doi:10.1029/jb081i023p04381
[3] Aki, K.; Richards, P. G., Quantitative Seismology: Theory and Methods (1980), San Francisco: Freeman, San Francisco
[4] Aki, K.; Richards, P. G., Quantitative Seismology (2002), Mill Valley, CA: University Science Books, Mill Valley, CA
[5] Arora, K.; Cazenave, A.; Engdahl, E. R.; Kind, R.; Manglik, A.; Roy, S.; Sain, K.; Uyeda, S., Encyclopedia of Solid Earth Geophysics (2011), Berlin: Springer, Berlin
[6] Bozdağ, E.; Trampert, J.; Tromp, J., Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements, Geophys. J. Int., 185, 845-870 (2011) · doi:10.1111/j.1365-246x.2011.04970.x
[7] Brokes̆ová, J., Asymptotic Ray Method in Seismology: A Tutorial (2006), Praha: Matfyzpress, Praha
[8] Cerveny, V., Seismic Ray Theory (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 0990.86001
[9] Dai, D-C; Stojkovic, D., Origin of the tail in Green’s functions in odd-dimensional space-times, Eur. Phys. J. Plus, 128, 122 (2013) · doi:10.1140/epjp/i2013-13122-1
[10] Durand, S.; Debayle, E.; Ricard, Y.; Zaroli, C.; Lambotte, S., Confirmation of a change in the global shear velocity pattern at around 1000 km depth, Geophys. J. Int., 211, 1628-1639 (2017) · doi:10.1093/gji/ggx405
[11] Dziewonski, A. M.; Anderson, D. L., Preliminary reference Earth model, Phys. Earth Planet. Inter., 25, 297-356 (1981) · doi:10.1016/0031-9201(81)90046-7
[12] Dziewonski, A. M.; Hager, B. H.; O’Connell, R. J., Large-scale heterogeneities in the lower mantle, J. Geophys. Res., 82, 239-255 (1977) · doi:10.1029/jb082i002p00239
[13] Feynman, R. P., QED: The Strange Theory of Light and Matter, vol 90 (2006), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1315.81008
[14] French, S. W.; Romanowicz, B. A., Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography, Geophys. J. Int., 199, 1303-1327 (2014) · doi:10.1093/gji/ggu334
[15] Grand, S. P., Mantle shear-wave tomography and the fate of subducted slabs, Phil. Trans. R. Soc. A, 360, 2475-2491 (2002) · doi:10.1098/rsta.2002.1077
[16] Groenenboom, J.; Snieder, R., Attenuation, dispersion, and anisotropy by multiple scattering of transmitted waves through distributions of scatterers, J. Acoust. Soc. Am., 98, 3482-3492 (1995) · doi:10.1121/1.413780
[17] Houser, C.; Masters, G.; Shearer, P.; Laske, G., Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms, Geophys. J. Int., 174, 195-212 (2008) · doi:10.1111/j.1365-246x.2008.03763.x
[18] Hung, S-H; Dahlen, F. A.; Nolet, G., Wavefront healing: a banana-doughnut perspective, Geophys. J. Int., 146, 289-312 (2001) · doi:10.1046/j.1365-246x.2001.01466.x
[19] Ishimaru, A., Wave Propagation and Scattering in Random Media, vol 2 (1978), New York: Academic, New York · Zbl 0873.65115
[20] Kennet, B. L N., IASPEI 1991 seismological tables, Terra Nova, 3, 122 (1991) · doi:10.1111/j.1365-3121.1991.tb00863.x
[21] Kennett, B. L N.; Engdahl, E. R.; Buland, R., Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 122, 108-124 (1995) · doi:10.1111/j.1365-246x.1995.tb03540.x
[22] Koelemeijer, P.; Ritsema, J.; Deuss, A.; Van Heijst, H-J, SP12RTS: a degree-12 model of shear-and compressional-wave velocity for Earth’s mantle, Geophys. J. Int., 204, 1024-1039 (2016) · doi:10.1093/gji/ggv481
[23] Komatitsch, D.; Tromp, J., Spectral-element simulations of global seismic wave propagation: I. Validation, Geophys. J. Int., 149, 390-412 (2002) · doi:10.1046/j.1365-246x.2002.01653.x
[24] Komatitsch, D.; Tromp, J., Spectral-element simulations of global seismic wave propagation: II. Three-dimensional models, oceans, rotation and self-gravitation, Geophys. J. Int., 150, 303-318 (2002) · doi:10.1046/j.1365-246x.2002.01716.x
[25] Lei, W., Global adjoint tomography—model GLAD-M25, Geophys. J. Int., 223, 1-21 (2020) · doi:10.1093/gji/ggaa253
[26] Lu, C.; Grand, S. P.; Lai, H.; Garnero, E. J., TX2019slab: a new P and S tomography model incorporating subducting slabs, J. Geophys. Res. Solid Earth, 124, 11549-11567 (2019) · doi:10.1029/2019jb017448
[27] Marquering, H.; Dahlen, F. A.; Nolet, G., Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox, Geophys. J. Int., 137, 805-815 (1999) · doi:10.1046/j.1365-246x.1999.00837.x
[28] Marquering, H.; Nolet, G.; Dahlen, F. A., Three-dimensional waveform sensitivity kernels, Geophys. J. Int., 132, 521-534 (1998) · doi:10.1046/j.1365-246x.1998.00426.x
[29] Montelli, R.; Nolet, G.; Dahlen, F. A.; Masters, G., A catalogue of deep mantle plumes: new results from finite-frequency tomography, Geochem., Geophys., Geosyst., 7, 11 (2006) · doi:10.1029/2006gc001248
[30] Nolet, G., A Breviary of Seismic Tomography: Imaging the Interior of the Earth and Sun (2008), Cambridge: Cambridge University Press, Cambridge · Zbl 1166.86001
[31] Nolet, G.; Dahlen, F. A.; Montelli, R.; Levander, A.; Nolet, G., Traveltimes and amplitudes of seismic waves: a reassessment, Seismic Earth: Array Analysis of Broadband Seismograms, 37-47 (2005), Washington, DC: American Geophysical Union, Washington, DC · doi:10.1029/157gm03
[32] Ritsema, J.; Deuss, A.; Van Heijst, H. J.; Woodhouse, J. H., S40RTS: a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements, Geophys. J. Int., 184, 1223-1236 (2011) · doi:10.1111/j.1365-246x.2010.04884.x
[33] Ritsema, J.; van Heijst, H. J.; Woodhouse, J. H., Complex shear wave velocity structure imaged beneath Africa and Iceland, Science, 286, 1925-1928 (1999) · doi:10.1126/science.286.5446.1925
[34] Robinson, E. A.; Clark, D., Basic Geophysics (2017), Tulsa: Society of Exploration Geophysicists, Tulsa
[35] Schaeffer, A. J.; Lebedev, S., Global shear speed structure of the upper mantle and transition zone, Geophys. J. Int., 194, 417-449 (2013) · doi:10.1093/gji/ggt095
[36] Sengupta, M. K.; Toksöz, M. N., Three dimensional model of seismic velocity variation in the Earth’s mantle, Geophys. Res. Lett., 3, 84-86 (1977) · doi:10.1029/gl003i002p00084
[37] Snieder, R., Imaging and averaging in complex media, Diffuse Waves in Complex Media, 405-454 (1999), Berlin: Springer, Berlin · Zbl 0991.86506 · doi:10.1007/978-94-011-4572-5_14
[38] Snieder, R.; Lomax, A., Wavefield smoothing and the effect of rough velocity perturbations on arrival times and amplitudes, Geophys. J. Int., 125, 796-812 (1996) · doi:10.1111/j.1365-246x.1996.tb06024.x
[39] Spetzler, J.; Snieder, R., The Fresnel volume and transmitted waves, Geophysics, 69, 653-663 (2004) · doi:10.1190/1.1759451
[40] Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation (1987), Philadelphia: Society for Industrial and Applied Mathematics, Philadelphia · Zbl 0875.65001
[41] Tian, Y.; Montelli, R.; Nolet, G.; Dahlen, F. A., Computing traveltime and amplitude sensitivity kernels in finite-frequency tomography, J. Comput. Phys., 226, 2271-2288 (2007) · Zbl 1147.86300 · doi:10.1016/j.jcp.2007.07.004
[42] Woodward, M. J., Wave‐equation tomography, Geophysics, 57, 15-26 (1992) · doi:10.1190/1.1443179
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.