×

Waves in slowly varying band-gap media. (English) Zbl 1380.34090

This paper is concerned with waves in locally periodic media in the high-frequency limit where the wavelength is commensurate with the period. A key issue is that the Bloch-dispersion curves vary with the local microstructure, giving rise to hidden singularities associated with band-gap edges and branch crossings. An asymptotic approach is proposed to overcome this difficulty. This approach is demonstrated in the simplest case of time-harmonic waves in a one-dimensional locally periodic medium. The method entails matching adiabatically propagating Bloch waves, captured by a two-variable Wentzel-Kramers-Brillouin (WKB) approximation, with complementary multiple-scale solutions spatially localized about dispersion singularities. WKB analysis is characterized by the following aspects: the frequency domain is used, the complex-valued transport equation is decomposed into two simpler real equations, respectively, governing the amplitude and a slow phase. Additionally, by considering perturbations of the Bloch eigenvalue problem, exact identities that allow to simplify the asymptotic formulae are derived. Also a more general multiple-scale representation of the locally periodic medium is considered.
The latter solutions, obtained following the method of high-frequency homogenization (HFH), hold over dynamic length scales intermediate between the periodicity (wavelength) and the macro-scale. In particular, close to a spatial band-gap edge the solution is an Airy function modulated on the short scale by a standing-wave Bloch eigenfunction.
The key message of this paper is that multiple-scale WKB approximations and HFH are complementary and have overlapping domains of validity. The two methods can therefore be systematically combined, through the method of matched asymptotic expansions, to furnish a more complete scheme for high-frequency waves in periodic, or locally periodic, media.

MSC:

34E20 Singular perturbations, turning point theory, WKB methods for ordinary differential equations
34E05 Asymptotic expansions of solutions to ordinary differential equations
78M35 Asymptotic analysis in optics and electromagnetic theory

References:

[1] G. Allaire and L. Friz, {\it Localization of high-frequency waves propagating in a locally periodic medium}, P. Edinburgh Math. Soc., 140 (2010), pp. 897-926. · Zbl 1204.35034
[2] G. Allaire, M. Palombaro, and J. Rauch, {\it Diffractive geometric optics for Bloch wave packets}, Arch. Rational Mech. Anal., 202 (2011), pp. 373-426. · Zbl 1269.78004
[3] T. Antonakakis and R. V. Craster, {\it High-frequency asymptotics for microstructured thin elastic plates and platonics}, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , 468 (2012), pp. 1408-1427. · Zbl 1364.74071
[4] T. Antonakakis, R. V. Craster, and S. Guenneau, {\it High-frequency homogenization of zero-frequency stop band photonic and phononic crystals}, New J. Phys., 15 (2013), 103014.
[5] T. Antonakakis, R. V. Craster, and S. Guenneau, {\it Homogenisation for elastic photonic crystals and dynamic anisotropy}, J. Mech. Phys. Solids, 71 (2014), pp. 84-96. · Zbl 1328.74048
[6] A. Bensoussan, J.-L. Lions, and G. Papanicolaou, {\it Asymptotic Analysis for Periodic Structures}, corrected reprint of the 1978 original, AMS Chelsea Publishing, Providence, RI, 2011. · Zbl 1229.35001
[7] M. V. Berry, {\it Quantal phase factors accompanying adiabatic changes}, Proc. Roy. Soc. London Ser. A, 392 (1984), pp. 45-57. · Zbl 1113.81306
[8] L. Brillouin, {\it Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices}, Courier Corporation, 2003.
[9] E. Cassan, K. Do, C. Caer, D. Marris-Morini, and L. Vivien, {\it Short-wavelength light propagation in graded photonic crystals}, J. Lightw. Technol., 29 (2011), pp. 1937-1943.
[10] L. Ceresoli, R. Abdeddaim, T. Antonakakis, B. Maling, M. Chmiaa, P. Sabouroux, G. Tayeb, S. Enoch, R. V. Craster, and S. Guenneau, {\it Dynamic effective anisotropy: Asymptotics, simulations, and microwave experiments with dielectric fibers}, Phys. Rev. B, 92 (2015), 174307.
[11] S. J. Chapman, J. M. H. Lawry, J. R. Ockendon, and R. H. Tew, {\it On the theory of complex rays}, SIAM Rev., 41 (1999), pp. 417-509, . · Zbl 0935.78004
[12] K. D. Cherednichenko, {\it Two-Scale Series Expansions for Travelling Wave Packets in One-Dimensional Periodic Media}, preprint, Isaac Newton Institute for Mathematical Sciences, 2015.
[13] D. J. Colquitt, R. V. Craster, T. Antonakakis, and S. Guenneau, {\it Rayleigh-Bloch waves along elastic diffraction gratings}, Proc. A, 471 (2015), 20140465. · Zbl 1371.74146
[14] D. J. Colquitt, R. V. Craster, and M. Makwana, {\it High frequency homogenisation for elastic lattices}, Quart. J. Mech. Appl. Math., 68 (2015), pp. 203-230. · Zbl 1317.74077
[15] D. J. Colquitt, N. V. Movchan, and A. B. Movchan, {\it Parabolic metamaterials and Dirac bridges}, J. Mech. Phys. Solids, 95 (2016), pp. 621-631.
[16] R. V. Craster, S. Guenneau, and S. D. M. Adams, {\it Mechanism for slow waves near cutoff frequencies in periodic waveguides}, Phys. Rev. B, 79 (2009), 045129.
[17] R. V. Craster, J. Kaplunov, and A. V. Pichugin, {\it High-frequency homogenization for periodic media}, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 466 (2010), pp. 2341-2362. · Zbl 1196.35038
[18] D. Harutyunyan, R. V. Craster, and G. W. Milton, {\it High Frequency Homogenization for Travelling Waves in Periodic Media}, preprint, , 2016. · Zbl 1371.35005
[19] M. H. Holmes, {\it Introduction to Perturbation Methods}, 2nd ed., Texts Appl. Math. 20, Springer, 2013. · Zbl 1270.34002
[20] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, {\it Photonic Crystals: Molding the Flow of Light}, Princeton University Press, 2011. · Zbl 1144.78303
[21] S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, {\it Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals}, Phys. Rev. E, 66 (2002), 066608.
[22] L. M. Joseph and R. V. Craster, {\it Reflection from a semi-infinite stack of layers using homogenization}, Wave Motion, 54 (2015), pp. 145-156. · Zbl 1454.74088
[23] C. Kittel, {\it Introduction to Solid State Physics}, Wiley, 2005. · Zbl 0052.45506
[24] H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, {\it The focusing effect of graded index photonic crystals}, Appl. Phys. Lett., 93 (2008), 171108.
[25] L. Lu, J. D. Joannopoulos, and M. Soljačić, {\it Topological photonics}, Nature Photon., 8 (2014), pp. 821-829.
[26] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, {\it All-angle negative refraction without negative effective index}, Phys. Rev. B, 65 (2002), 201104.
[27] B. J. Maling, D. J. Colquitt, and R. V. Craster, {\it Dynamic homogenisation of Maxwell’s equations with applications to photonic crystals and localised waveforms on gratings}, Wave Motion, 69 (2016), pp. 35-49. · Zbl 1524.74392
[28] L. Náraigh and D. O’Kiely, {\it Homogenization theory for periodic potentials in the Schrödinger equation}, Eur. J. Phys., 34 (2013), pp. 19-32. · Zbl 1266.81074
[29] M. Notomi, {\it Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap}, Phys. Rev. B, 62 (2000), 10696.
[30] M. Notomi, {\it Manipulating light with strongly modulated photonic crystals}, Rep. Prog. Phys., 73 (2010), 096501.
[31] G. Panati, H. Spohn, and S. Teufel, {\it Effective dynamics for Bloch electrons: Peierls substitution and beyond}, Commun. Math. Phys., 242 (2003), pp. 547-578. · Zbl 1058.81020
[32] S. Raghu and F. D. M. Haldane, {\it Analogs of quantum-hall-effect edge states in photonic crystals}, Phys. Rev. A, 78 (2008), 033834.
[33] V. Romero-Garcia, R. Pico, A. Cebrecos, V. J. Sanchez-Morcillo, and K. Staliunas, {\it Enhancement of sound in chirped sonic crystals}, Appl. Phys. Lett., 102 (2013), 091906.
[34] P. S. J. Russel and T. A. Birks, {\it Hamiltonian optics of nonuniform photonic crystals}, J. Lightw. Technol., 17 (1999), pp. 1982-1988.
[35] K. Sakoda, {\it Optical Properties of Photonic Crystals}, Springer Ser. Opt. Sci. 80, Springer, 2005.
[36] M. J. A. Smith, R. C. McPhedran, C. G. Poulton, and M. H. Meylan, {\it Negative refraction and dispersion phenomena in platonic clusters}, Waves Random Complex Media, 22 (2012), pp. 435-458. · Zbl 1366.78017
[37] J. Tromp and F. A. Dahlen, {\it The berry phase of a slowly varying waveguide}, Proc. Roy. Soc. London Ser. A, 437 (1992), pp. 329-342. · Zbl 0749.35036
[38] Y. A. Urzhumov and D. R. Smith, {\it Transformation optics with photonic band gap media}, Phys. Rev. Lett., 105 (2010), 163901.
[39] M. Van Dyke, {\it Perturbation Methods in Fluid Mechanics: Annotated Version}, The Parabolic Press, 1975. · Zbl 0329.76002
[40] A. B. Watson, J. Lu, and M. I. Weinstein, {\it Wavepackets in inhomogeneous periodic media: Effective particle-field dynamics and berry curvature}, J. Math. Phys., 58 (2017), 021503. · Zbl 1357.81085
[41] Weinan E, J.-F. Lu, and X. Yang, {\it Asymptotic analysis of quantum dynamics in crystals: The Bloch-Wigner transform, Bloch dynamics and Berry phase}, Acta Math. Appl. Sin. Engl. Ser., 29 (2013), pp. 465-476. · Zbl 1278.81084
[42] E. Yablonovitch, {\it Inhibited spontaneous emission in solid-state physics and electronics}, Phys. Rev. Lett., 58 (1987), pp. 2059-2062.
[43] P. Yeh, {\it Optical Waves in Layered Media}, Pure Appl. Opt. 61, John Wiley & Sons, Inc., 2005.
[44] P. Yeh and A. Yariv, {\it Bragg reflection waveguides}, Opt. Commun., 19 (1976), pp. 427-430.
[45] R. Zengerle, {\it Light propagation in singly and doubly periodic planar waveguides}, J. Mod. Opt., 34 (1987), pp. 1589-1617.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.