×

Best approximation in Hardy spaces and by polynomials, with norm constraints. (English) Zbl 1275.41032

Let \(G\) be either the disk or the annulus. Let \(I\) be a subset of the boundary of \(G\) so that both \(I\) and its complement \(J\) in the boundary of \(G\) have positive Lebesgue measure. Let \(f\) be a Lebesgue integrable function on \(I\) and let \(c\) and \(M > 0\) be given numbers. The problem of this study is to find a solution \(g\) so that the \(L_p\)-norm over \(I\) of \(f-g_c\) is equal \[ \min_g\{\| f-g_c\|_{L_p(I)} , g \in H^p(G) ; \|g -c\|_{L_p(J )}\leq M \}; \]
where \( H^p(G) \) represents the Hardy space associated with \(p\) and \(G\).
Truncated versions of the problem are analyzed with solutions chosen from finite dimensional spaces of polynomials or rational functions. The solutions are presented in terms of truncated Toeplitz operators. The results are illustrated with numerical examples. The results are related to inverse problems for PDEs.

MSC:

41A40 Saturation in approximation theory
41A45 Approximation by arbitrary linear expressions

References:

[1] Abrahamse M.B.: Toeplitz operators in multiply connected regions. Bul. Math. Soc. 77, 449-454 (1971) · Zbl 0212.16001 · doi:10.1090/S0002-9904-1971-12734-9
[2] Alpay, D., Baratchart, L., Leblond, J.: Some extremal problems linked with identification from partial frequency data, 10th conference in Analysis and optimization of systems, Sophia Antipolis, 1992, LNCIS 185, 563-573, Springer Verlag, 1993 · Zbl 0792.93022
[3] Alpay D., Leblond J.: Traces of Hardy functions and reproducing kernel Hilbert spaces. Archiv. der Math. 64, 490-499 (1995) · Zbl 1126.46304 · doi:10.1007/BF01195131
[4] Aryana C.P., Clancey K.F.: On the existence of eigenvalues of Toeplitz operators on planar regions. Proc. Amer. Math. Soc. 132, 3007-3018 (2004) · Zbl 1063.47019 · doi:10.1090/S0002-9939-04-07273-9
[5] Atfeh B., Baratchart L., Leblond J., Partington J.R.: Bounded extremal and Cauchy-Laplace problems on the sphere and shell. J.Fourier Anal. Appl. 16, 177-203 (2010) · Zbl 1193.31003 · doi:10.1007/s00041-009-9110-0
[6] Baratchart L., Grimm J., Leblond J., Partington J.R.: Asymptotic estimates for interpolation and constrained approximation in H2 by diagonalization of Toeplitz operators. Int. Eq. Oper. Theory 45, 269-299 (2003) · Zbl 1058.41008 · doi:10.1007/s000200300005
[7] Baratchart L., Leblond J.: Hardy approximation to Lp functions on subsets of the circle with 1 ≤ p < ∞. Constr. Approx. 14, 41-56 (1998) · Zbl 0894.30023 · doi:10.1007/s003659900062
[8] Baratchart L., Leblond J., Partington J.R.: Hardy approximation to L∞ functions on subsets of the circle. Constr. Approx. 12, 423-435 (1996) · Zbl 0853.30022
[9] Baratchart L., Leblond J., Partington J.R., Torkhani N.: Robust identification from band-limited data. I.E.E.E. Trans. Automat. Cont. 42, 1318-1325 (1997) · Zbl 0889.93014 · doi:10.1109/9.623101
[10] Beauzamy, B.: Introduction to Banach spaces and their geometry. North-Holland Mathematics Studies 68, 1985 · Zbl 0585.46009
[11] Böttcher, A., Silbermann, B.: Introduction to large truncated Toeplitz matrices. Universitext, Springer Verlag (1999) · Zbl 0916.15012
[12] Brézis, H.: Analyse fonctionnelle, théorie et applications, Masson (1999) · Zbl 1085.30032
[13] Chalendar I., Partington J.R.: Approximation problems and representations of Hardy spaces in circular domains. Studia. Math. 136, 255-269 (1999) · Zbl 0952.30033
[14] Chalendar I., Partington J.R.: Constrained approximation and invariant subspaces. J. Math. Anal. Appl. 280, 176-187 (2003) · Zbl 1022.41015 · doi:10.1016/S0022-247X(03)00099-4
[15] Chalendar I., Partington J.R., Smith M.: Approximation in reflexive Banach spaces and applications to the invariant subspace problem. Proc. Amer. Math. Soc. 132, 1133-1142 (2004) · Zbl 1115.46009 · doi:10.1090/S0002-9939-03-07152-1
[16] Ciarlet, P.G.: Introduction à l’analyse numérique matricielle et à l’optimisation, Masson (1982) · Zbl 0488.65001
[17] Duren, P.L.: Theory of Hp spaces, Pure and Applied Mathematics 38, Academic Press, New York (1970) · Zbl 0215.20203
[18] Fischer, Y.: Approximation dans des classes de fonctions analytiques généralisées et résolution de problèmes inverses pour les tokamaks. PhD Thesis, Univ. Nice Sophia-Antipolis (2011) · Zbl 1111.35121
[19] Fischer Y., Leblond J., Partington J.R., Sincich E.: Bounded extremal problems in Hardy spaces for the conjugate Beltrami equation in simply-connected domains. Appl. Comput. Harmon. Anal. 31, 264-285 (2011) · Zbl 1253.30080 · doi:10.1016/j.acha.2011.01.003
[20] Jaoua M., Leblond J., Mahjoub M., Partington J.R.: Robust numerical algorithms based on analytic approximation for the solution of inverse problems in annular domains. IMA J. Appl. Math. 74, 481-506 (2009) · Zbl 1231.35305
[21] Leblond J., Mahjoub M., Partington J.R.: Analytic extensions and Cauchy-type inverse problems on annular domains: stability results. J. Inverse Ill-Posed Probl. 14, 189-204 (2006) · Zbl 1111.35121 · doi:10.1515/156939406777571049
[22] Leblond J., Marmorat J.P., Partington J.R.: Analytic approximation with real constraints with applications to inverse diffusion problems. J. Inv. Ill-Posed Probl. 16, 18-105 (2008) · Zbl 1132.35500
[23] Miranian L.: Slepian functions on the sphere, generalized Gaussian quadrature rule. Inverse Probl. 20, 877-892 (2004) · Zbl 1065.65100 · doi:10.1088/0266-5611/20/3/014
[24] Nikolski, N.K.: Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz. Andreas Hartmann. Math. Surveys and Monographs 92, Amer. Math. Soc., 2002. · Zbl 1007.47002
[25] Pommerenke C.: Boundary behaviour of conformal maps. Springer Verlag, New York (1992) · Zbl 0762.30001 · doi:10.1007/978-3-662-02770-7
[26] Rosenblum M., Rovnyak J.: Hardy classes and operator theory. Dover Publications, Mineola (1997) · Zbl 0918.47001
[27] Sarason, D.: The Hp spaces of an annulus. Mem. Amer. Math. Soc. 56 (1965) · Zbl 0127.07002
[28] Sarason D.: Algebraic properties of truncated Toeplitz operators. Operat. Mat. 1, 491-526 (2007) · Zbl 1144.47026 · doi:10.7153/oam-01-29
[29] Simons F.J., Dahlen F.A., Wieczorek M.A.: Spatiospectral concentration on a sphere. SIAM Rev. 48, 504-536 (2006) · Zbl 1117.42003 · doi:10.1137/S0036144504445765
[30] Slepian D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty V. Dis. Case. Bell Syst. Tech. J. 57, 1371-1430 (1978) · Zbl 0378.33006
[31] Slepian D., Pollak H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell Syst. Tech. J. 40, 43-63 (1961) · Zbl 0184.08601
[32] Smith M.: The spectral theory of Toeplitz operators applied to approximation problems in Hilbert spaces. Constr. Approx. 22, 47-65 (2005) · Zbl 1085.30032 · doi:10.1007/s00365-004-0591-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.