×

Efficient and accurate rotation of finite spherical harmonics expansions. (English) Zbl 1243.65037

Summary: Spherical harmonics are employed in a wide range of applications in computational science and physics, and many of them require the rotation of functions. We present an efficient and accurate algorithm for the rotation of finite spherical harmonics expansions. Exploiting the pointwise action of the rotation group on functions on the sphere, we obtain the spherical harmonics expansion of a rotated signal from function values at rotated sampling points. The number of sampling points and their location permits one to balance performance and accuracy, making our technique well-suited for a wide range of applications. Numerical experiments comparing different sampling schemes and various techniques from the literature are presented, making this the first thorough evaluation of spherical harmonics rotation algorithms.

MSC:

65D20 Computation of special functions and constants, construction of tables
33C55 Spherical harmonics
33F05 Numerical approximation and evaluation of special functions

Software:

L-BFGS-B; L-BFGS; LBFGS-B
Full Text: DOI

References:

[1] Schmidt, A., Formeln zur Transformation der Kugelfunktionen, Z. Math. Phys., 44, 327 (1899)
[2] Wigner, E. P., Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren (1931), Vieweg Verlag: Vieweg Verlag Braunchweig · JFM 57.1578.03
[3] Ivanic, J.; Ruedenberg, K., Rotation matrices for real spherical harmonics, direct determination by recursion, J. Phys. Chem., 100, 15, 6342-6347 (1996), URL <http://pubs.acs.org/doi/abs/10.1021/jp953350u>
[4] Edmonds, A. R., Angular Momentum in Quantum Mechanics (1957), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0079.42204
[5] James, R. W., Transformation of spherical harmonics under change of reference frame, Geophys. J. Int., 17, 3, 305-316 (1969), URL <http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-246X.1969.tb00239.x> · Zbl 0172.14804
[6] White, C. A.; Head-Gordon, M., Rotating around the quartic angular momentum barrier in fast multipole method calculations, J. Chem. Phys., 105, 12, 5061-5067 (1996), URL <http://link.aip.org/link/?JCP/105/5061/1>
[7] Blanco, M. A.; Flórez, M.; Bermejo, M., Evaluation of the rotation matrices in the basis of real spherical harmonics, J. Mol. Struct., 419, 19-27 (1997)
[8] S. Kenyon, J. Factor, N. Pavlis, S. Holmes, Towards the Next Earth Gravitational Model, in: Society of Exploration Geophysicists 77th Annual Meeting, San Antonio, Texas, USA, 2007. URL <http://earth-info.nga.mil/GandG/wgs84/gravitymod/new_egm/EGM08_papers/EGM-2007-final.pdf>; S. Kenyon, J. Factor, N. Pavlis, S. Holmes, Towards the Next Earth Gravitational Model, in: Society of Exploration Geophysicists 77th Annual Meeting, San Antonio, Texas, USA, 2007. URL <http://earth-info.nga.mil/GandG/wgs84/gravitymod/new_egm/EGM08_papers/EGM-2007-final.pdf>
[9] Gimbutas, Z.; Greengard, L., A fast and stable method for rotating spherical harmonic expansions, J. Comput. Phys., 228, 16, 5621-5627 (2009), URL <http://linkinghub.elsevier.com/retrieve/pii/S0021999109002691> · Zbl 1184.33007
[10] Pinchon, D.; Hoggan, P. E., Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in space-fixed axes, J. Phys. A: Math. Theor., 40, 1597-1610 (2007), URL<http://stacks.iop.org/1751-8121/40/1597> · Zbl 1113.81064
[11] Freeden, W.; Gervens, T.; Schreiner, M., Constructive Approximation on the Sphere (With Applications to Geomathematics) (1998), Oxford Sciences Publication. Clarendon Press: Oxford Sciences Publication. Clarendon Press Oxford University · Zbl 0896.65092
[12] Aronszajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 68, 3, 337-404 (1950), URL <http://www.jstor.org/stable/1990404> · Zbl 0037.20701
[13] Saitoh, S., Integral Transforms, Reproducing Kernels and their Applications, Pitman Research Notes in Mathematics (1997), Longman Scientific & Technical · Zbl 0891.44001
[14] Müller, C., Spherical Harmonics, Lecture Notes in Mathematics (1966), Springer · Zbl 0138.05101
[15] Cui, J.; Freeden, W., Equidistribution on the Sphere, SIAM J. Sci. Comput., 18, 595-609 (1997), <doi:http://dx.doi.org/10.1137/S1064827595281344> · Zbl 0986.11049
[16] Saff, E.; Kuijlaars, A., Distributing many points on a sphere, Math Intell., 19, 1, 5-11 (1997), URL <http://www.springerlink.com/index/10.1007/BF03024331> · Zbl 0901.11028
[17] Kovacevic, J.; Chebira, A., Life beyond bases: the advent of frames (Part I), Signal Proces. Mag., IEEE, 24, 4, 86-104 (2007), URL <http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4286567>
[18] Mallat, S. G., A Wavelet Tour of Signal Processing: The Sparse Way (2009), Academic Press · Zbl 1170.94003
[19] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, Algorithm 778: L-BFGS-B:Fortran subroutines for large-scale bound-constrained optimization, ACM Transactions on Mathematical Software (TOMS) 23 (4). URL <http://portal.acm.org/citation.cfm?id=279236>; C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, Algorithm 778: L-BFGS-B:Fortran subroutines for large-scale bound-constrained optimization, ACM Transactions on Mathematical Software (TOMS) 23 (4). URL <http://portal.acm.org/citation.cfm?id=279236> · Zbl 0912.65057
[20] B.L. Kempski, Extension of the Whittaker-Shannon Sampling Series Aided by Symbolic Computation, M.Sc. thesis, Anglia Polytechnique University, Cambridge, 1995.; B.L. Kempski, Extension of the Whittaker-Shannon Sampling Series Aided by Symbolic Computation, M.Sc. thesis, Anglia Polytechnique University, Cambridge, 1995.
[21] Higgins, J. R., Sampling Theory in Fourier and Signal Analysis: Foundations (1996), Oxford University Press: Oxford University Press Oxford · Zbl 0872.94010
[22] Stern, D., Classification of magnetic shells, J. Geophys. Res., 70, 15, 3629-3634 (1965), URL <http://www.agu.org/journals/ABS/1965/JZ070i015p03629.shtml>
[23] Armentano, D.; Beltrán, C.; Shub, M., Minimizing the discrete logarithmic energy on the sphere: The role of random polynomials, Trans. Amer. Math. Soc., 363, 2955-2965 (2011), URL <http://www.ams.org/journals/tran/2011-363-06/S0002-9947-2011-05243-8/home.html> · Zbl 1223.31003
[24] Sloan, I. H.; Womersley, R., Extremal systems of points and numerical integration on the sphere, Adv. Comput. Math., 21, 1, 107-125 (2004), URL <http://www.springerlink.com/content/w2304u80w0542578/> · Zbl 1055.65038
[25] Bannai, E.; Damerell, R. M., Tight spherical designs, I, J. Math. Soc. Japan, 31, 1, 199-207 (1979), URL <http://projecteuclid.org/euclid.jmsj/1240319488> · Zbl 0403.05022
[26] Bannai, E.; Damerell, R. M., Tight Spherical Designs, II, J. London Math. Soc., s2-21, 1, 13-30 (1980) · Zbl 0436.05018
[27] Simons, F. J.; Dahlen, F. A.; Wieczorek, M. A., Spatiospectral concentration on a sphere, SIAM Rev., 48, 3, 504-536 (2006), URL <http://link.aip.org/link/?SIR/48/504/1> · Zbl 1117.42003
[28] Vaidyanathan, P. P., Sampling theorems for nonbandlimited signals, (Benedetto, J. J.; Zayed, A. I., Sampling, Wavelets, and Tomography (2004), Birkhäuser: Birkhäuser Boston), 115-136, (Chapter 5) · Zbl 1062.94539
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.