×

Estimates for continuity envelopes and approximation numbers of Bessel potentials. (English) Zbl 1293.46020

For \(\alpha\in(0,\infty)\), let \(G_\alpha\) be the Bessel-MacDonald kernel. For a measurable function \(f\) on \(\mathbb R^n\), denote by \(f^\ast\) the decreasing rearrangement of \(f\) and let \(u(x)=G_\alpha\ast f(x)\) for all \(x\in\mathbb R^n\). Let \(C(\mathbb R^n)\) be the space of all complex-valued bounded uniformly continuous functions \(f\) on \(\mathbb R^n\), equipped with the sup-norm \(\|f\|_{C(\mathbb R^n)}:=\sup_{x\in \mathbb R^n}|f(x)|\). The \(k\)-th modulus of smoothness of a function \(f\in C(\mathbb R^n)\) is defined by setting, for all \(t\in(0,\infty)\) and \(k\in\mathbb N:=\{1,2,\dots\}\), \(\omega_k(f;t):=\sup_{|h|\leq t}\|\Delta_h^kf(x)\|_{C(\mathbb R^n)}\), where \(\Delta_h^1f(x):=f(x+h)-f(x)\) and \(\Delta_h^{k}f(x):=\Delta_h^1(\Delta_h^{k-1}f)(x)\) for all \(k\geq2\).
In this paper, the authors prove the following conclusion. Let \(k\in\mathbb N\), \(\alpha\in(0,n)\) and \(f:\;\mathbb R^n\to\mathbb R\) be a function such that, for fixed \(T\in(0,\infty)\), \(\int_0^T\tau^{\frac\alpha n-1}f^\ast(\tau)\,d\tau<\infty\). Then there exist positive constants \(c\) and \( \widetilde c\) such that \[ \|u\|_{C(\mathbb R^n)}\leq c\int_0^T\tau^{\frac\alpha n-1}f^\ast(\tau)\,d\tau \] and, for all \(t\in(0,T)\), \[ \omega_k(u;t^\frac1n)\leq \widetilde{c}\int_0^T\frac{\tau^{\frac{\alpha-k}{n}-1}} {\tau^{-\frac kn}+t^{-\frac kn}}f^\ast(\tau)\,d\tau. \] Conversely, the authors find some \(T_0\in(0,\infty)\) and construct an extremal function \(f_0\) corresponding to \(T_0\) such that \[ \omega_k(u_0;t^\frac1n)\geq c_0\int_0^{T_0}\frac{\tau^{\frac{\alpha-k}{n}-1}} {\tau^{-\frac kn}+t^{-\frac kn}}f_0^\ast(\tau)\,d\tau \] for all \(t\in(0,T_0]\), where \(u_0(x):=G_\alpha\ast f_0(x)\) for all \(x\in\mathbb R^n\) and \(c_0\) is a positive constant only depending on \(\alpha\), \(n\), \(k\). As applications of these results, the authors determine the continuity envelope functions for spaces of Bessel potential in \(n\)-dimensional Euclidean spaces and estimate the approximation numbers of some embeddings as well.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47B06 Riesz operators; eigenvalue distributions; approximation numbers, \(s\)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
26A15 Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.) for real functions in one variable
31B15 Potentials and capacities, extremal length and related notions in higher dimensions
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI

References:

[1] Akhieser, N., Vorlesungen über Approximationstheorie (1953), Akademie-Verlag: Akademie-Verlag Berlin, (in German) · Zbl 0152.25302
[2] Bennett, C.; Sharpley, R., Interpolation of Operators (1988), Academic Press: Academic Press Boston · Zbl 0647.46057
[3] Caetano, A., About approximation numbers in function spaces, J. Approx. Theory, 94, 383-395 (1998) · Zbl 0915.46026
[4] Caetano, A.; Gogatishvili, A.; Opic, B., Sharp embeddings of Besov spaces involving only logarithmic smoothness, J. Approx. Theory, 152, 188-214 (2008) · Zbl 1161.46017
[5] Caetano, A.; Moura, S., Local growth envelopes of spaces of generalized smoothness: the critical case, Math. Inequal. Appl., 7, 573-606 (2004) · Zbl 1076.46025
[6] Caetano, A.; Moura, S., Local growth envelopes of spaces of generalized smoothness: the subcritical case, Math. Nachr., 273, 43-57 (2004) · Zbl 1070.46020
[7] Cianchi, A., An optimal interpolation theorem of Marcinkiewicz type in Orlicz spaces, J. Funct. Anal., 153, 357-381 (1998) · Zbl 0913.46028
[8] Cianchi, A., Rearrangement of functions in Besov spaces, Math. Nachr., 230, 19-35 (2001) · Zbl 1022.46021
[9] Cianchi, A., Optimal Orlicz-Sobolev embeddings, Rev. Mat. Iberoam., 20, 427-474 (2004) · Zbl 1061.46031
[10] Cianchi, A.; Kerman, R.; Opic, B.; Pick, L., A sharp rearrangement inequality for the fractional maximal operator, Studia Math., 138, 277-284 (2000) · Zbl 0968.42014
[11] Curbera, G.; Ricker, W., Compactness properties of Sobolev imbeddings for rearrangement invariant norms, Trans. Amer. Math. Soc., 359, 1471-1484 (2007), (electronic) · Zbl 1116.46023
[12] Edmunds, D.; Kerman, R.; Pick, L., Optimal Sobolev imbeddings involving rearrangement-invariant quasinorms, J. Funct. Anal., 170, 307-355 (2000) · Zbl 0955.46019
[13] Edmunds, D.; Triebel, H., Function Spaces, Entropy Numbers, Differential Operators (1996), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0865.46020
[14] Gogatishvili, A.; Neves, J.; Opic, B., Optimality of embeddings of Bessel-potential-type spaces into Lorentz-Karamata spaces, Proc. Roy. Soc. Edinburgh Sect. A, 134, 1127-1147 (2004) · Zbl 1076.46021
[15] Gogatishvili, A.; Neves, J.; Opic, B., Sharpness and non-compactness of embeddings of Bessel-potential-type spaces, Math. Nachr., 280, 1083-1093 (2007) · Zbl 1137.46020
[16] Gogatishvili, A.; Neves, J.; Opic, B., Optimal embeddings and compact embeddings of Bessel-potential-type spaces, Math. Z., 262, 645-682 (2009) · Zbl 1179.46029
[17] Gogatishvili, A.; Neves, J.; Opic, B., Sharp estimates of the \(k\)-modulus of smoothness of Bessel potentials, J. Lond. Math. Soc. (2), 81, 608-624 (2010) · Zbl 1194.26026
[18] Gogatishvili, A.; Neves, J.; Opic, B., Compact embeddings of Bessel-potential-type spaces into generalized Hölder spaces involving \(k\)-modulus of smoothness, Z. Anal. Anwend., 30, 1-27 (2011) · Zbl 1213.46029
[19] Gogatishvili, A.; Ovchinnikov, V., Interpolation orbits and optimal Sobolev’s embeddings, J. Funct. Anal., 253, 1-17 (2007) · Zbl 1137.46021
[20] Gogatishvili, A.; Pick, L., Discretization and anti-discretization of rearrangement-invariant norms, Publ. Mat., 47, 311-358 (2003) · Zbl 1066.46023
[21] Gol’dman, M., On imbedding generalized Nikol’skij—Besov spaces in Lorentz spaces, Proc. Steklov Inst. Math., 172, 143-154 (1987), Transl. from Tr. Mat. Inst. Steklova 172 (1985) 128-139 · Zbl 0635.46029
[22] Gol’dman, M., Local growth envelopes and optimal embeddings of generalized Sobolev spaces, Dokl. Math., 74, 692-695 (2006), Transl. from Dokl. Akad. Nauk., Ross. Akad. Nauk. 410 (4) (2006) 445-448 · Zbl 1142.46016
[23] Gol’dman, M., Integral properties of generalized Bessel potentials, Dokl. Akad. Nauk, 414, 159-164 (2007), (in Russian). English Transl.: Dokl. Math. 75 (3) (2007) 361-366 · Zbl 1168.46016
[24] Gol’dman, M., Rearrangement invariant envelopes of generalized Besov, Sobolev, and Calderón spaces, (The Interaction of Analysis and Geometry. The Interaction of Analysis and Geometry, Contemp. Math., vol. 424 (2007), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 53-81 · Zbl 1153.46018
[25] Gol’dman, M.; Heinig, H.; Stepanov, V., On the principle of duality in Lorentz spaces, Canad. J. Math., 48, 959-979 (1996) · Zbl 0874.47011
[26] Gol’dman, M.; Kerman, R., On the optimal embedding of Calderón spaces and of generalized Besov spaces, Tr. Mat. Inst. Steklova, 243, 93-95 (2003), (in Russian); English transl.: translation in Proc. Steklov Inst. Math. 243 (4) (2003) 154-184 · Zbl 1090.46022
[27] Gol’dman, M.; Kerman, R., On the rearrangement-invariant hull of the Calderón space, Dokl. Akad. Nauk, 392, 155-159 (2003)
[28] Gol’dman, M.; Malysheva, A.; Haroske, D., Estimates of the uniform modulus of continuity for Bessel potentials, Dokl. Akad. Nauk, 450 (2013), (in Russian) · Zbl 1286.46032
[30] Haroske, D., (Envelopes and Sharp Embeddings of Function Spaces. Envelopes and Sharp Embeddings of Function Spaces, Chapman & Hall/CRC Research Notes in Mathematics, vol. 437 (2007), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL) · Zbl 1111.46002
[31] Kerman, R.; Pick, L., Optimal Sobolev imbeddings, Forum Math., 18, 535-570 (2006) · Zbl 1120.46018
[32] Kerman, R.; Pick, L., Compactness of Sobolev imbeddings involving rearrangement-invariant norms, Studia Math., 186, 127-160 (2008) · Zbl 1158.46024
[33] Kolyada, V., Rearrangements of functions and embedding theorems, Uspekhi Mat. Nauk, 44, 61-95 (1989), (in Russian); Engl. Transl.: Russian Math. Surveys 44 (5) (1989) 73-117 · Zbl 0715.41050
[34] Kolyada, V., On the differential properties of the rearrangements of functions, (Progress in Approximation Theory (Tampa, FL, 1990). Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math., vol. 19 (1992), Springer: Springer New York), 333-352 · Zbl 0848.26013
[35] Kolyada, V., Rearrangements of functions and embedding of anisotropic spaces of Sobolev type, East J. Approx., 4, 111-199 (1998) · Zbl 0917.46019
[36] Lebesgue, H., Sur les intégrales singulières, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3), 1, 25-117 (1909) · JFM 41.0327.02
[37] Marchaud, A., Sur les dérivées et sur les différences des fonctions de variables réelles, J. Math. Pures Appl. (9), 6, 337-425 (1927) · JFM 53.0232.02
[38] Neves, J., Lorentz-Karamata spaces, Bessel and Riesz potentials and embeddings, Dissertationes Math. (Rozprawy Mat.), 405, 46 (2002) · Zbl 1017.46021
[39] Nikol’skiĭ, S., Approximation of Functions of Several Variables and Embedding Theorems (1977), Nauka: Nauka Moscow, (in Russian); First edition 1969. English Transl.: Grundlehren der Mathematischen Wissenschaften, vol. 205, Springer, New York, Heidelberg, 1975 · Zbl 0307.46024
[40] Skrzypczak, L., On approximation numbers of Sobolev embeddings of weighted function spaces, J. Approx. Theory, 136, 91-107 (2005) · Zbl 1088.46018
[41] Stechkin, S., On the order of the best approximations of continuous functions, Izv. Akad. Nauk SSSR Ser. Mat., 15, 219-242 (1951), (in Russian) · Zbl 0042.30001
[42] Triebel, H., The Structure of Functions (2001), Birkhäuser: Birkhäuser Basel · Zbl 0984.46021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.