×

Generating free-form grid truss structures from 3D scanned point clouds. (English) Zbl 1426.74286

Summary: Reconstruction, according to physical shape, is a novel way to generate free-form grid truss structures. 3D scanning is an effective means of acquiring physical form information and it generates dense point clouds on surfaces of objects. However, generating grid truss structures from point clouds is still a challenge. Based on the advancing front technique (AFT) which is widely used in Finite Element Method (FEM), a scheme for generating grid truss structures from 3D scanned point clouds is proposed in this paper. Based on the characteristics of point cloud data, the search box is adopted to reduce the search space in grid generating. A front advancing procedure suit for point clouds is established. Delaunay method and Laplacian method are used to improve the quality of the generated grids, and an adjustment strategy that locates grid nodes at appointed places is proposed. Several examples of generating grid truss structures from 3D scanned point clouds of seashells are carried out to verify the proposed scheme. Physical models of the grid truss structures generated in the examples are manufactured by 3D print, which solidifies the feasibility of the scheme.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
65D17 Computer-aided design (modeling of curves and surfaces)
74Kxx Thin bodies, structures
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Isler, H., Concrete shells derived from experimental shapes, Structural Engineering International, 4, 3, 142-147, (1994) · doi:10.2749/101686694780601935
[2] Schlaich, M.; Burkhardt, U.; Irisarri, L.; Goñi, J., Palacio de comunicaciones-a single layer glass grid shell over the courtyard of the future town hall of Madrid, Proceedings of the Symposium of the International Association for Shell and Spatial Structures (IASS ’09)
[3] Szalapaj, P., Contemporary Architecture and the Digital Design Process, (2005), New York, NY, USA: Butterworth Heinemann, New York, NY, USA
[4] Li, N.; Luo, Y., New modeling technique for bionic space grid structures, International Journal of Advanced Steel Construction, 5, 1, 1-13, (2009)
[5] Ren, P.; Zhou, M.; Du, G.; Shui, W.; Zhou, P., 3D scanning modeling method application in ancient city reconstruction, Proceedings of the 3rd International Conference on Optical and Photonic Engineering (icOPEN ’15) · doi:10.1117/12.2189604
[6] Dorninger, P.; Pfeifer, N., A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds, Sensors, 8, 11, 7323-7343, (2008) · doi:10.3390/s8117323
[7] Lee, J.; Son, H.; Kim, C.; Kim, C., Skeleton-based 3D reconstruction of as-built pipelines from laser-scan data, Automation in Construction, 35, 199-207, (2013) · doi:10.1016/j.autcon.2013.05.009
[8] Zhu, L.; Hyyppa, J., The use of airborne and mobile laser scanning for modeling railway environments in 3D, Remote Sensing, 6, 4, 3075-3100, (2014) · doi:10.3390/rs6043075
[9] Comsa, A.; Maniu, I.; Lovasz, E.-C., Triangulation 3D scanning method in biomedical reconstruction, Solid State Phenomena, 166-167, 145-148, (2010) · doi:10.4028/www.scientific.net/SSP.166-167.145
[10] Lin, H.-W.; Tai, C.-L.; Wang, G.-J., A mesh reconstruction algorithm driven by an intrinsic property of a point cloud, Computer-Aided Design, 36, 1, 1-9, (2004) · doi:10.1016/S0010-4485(03)00064-2
[11] Moenning, C.; Dodgson, N. A., Fast marching farthest point sampling for implicit surface, UCAM-CL-TR-562, (2003), Cambrige, UK: University of Cambrige, Cambrige, UK
[12] Moenning, C., Intrinsic point-based surface processing, UCAM-CL-TR-658, (2006), Cambrige, UK: University of Cambrige, Cambrige, UK
[13] Liseikin, V., Grid Generation Methods. Grid Generation Methods, Scientific Computation, (1999), Berlin, Germany: Springer-Verlag, Berlin, Germany · Zbl 0949.65098 · doi:10.1007/978-3-662-03949-6
[14] Zienkiewicz, O. C.; Phillips, D. V., An automatic mesh generation scheme for plane and curved surfaces by ’isoparametric’ co-ordinates, International Journal for Numerical Methods in Engineering, 3, 4, 519-528, (1971) · Zbl 0248.65068 · doi:10.1002/nme.1620030407
[15] Löhner, R., Progress in grid generation via the advancing front technique, Engineering with Computers, 12, 3-4, 186-210, (1996) · doi:10.1007/BF01198734
[16] Blacker, T. D.; Stephenson, M. B., Paving: a new approach to automated quadrilateral mesh generation, International Journal for Numerical Methods in Engineering, 32, 4, 811-847, (1991) · Zbl 0755.65111 · doi:10.1002/nme.1620320410
[17] Li, C. M.; Lu, D., Study of intelligent layout design of single-layer lattice shell of free form surface, China Journal of Civil Engineering, 44, 3, 1-7, (2011)
[18] Curless, B., From range scans to 3D models, ACM SIGGRAPH Computer Graphics, 33, 4, 38-41, (2000) · doi:10.1145/345370.345399
[20] Peraire, J.; Vahdati, M.; Morgan, K.; Zienkiewicz, O. C., Adaptive remeshing for compressible flow computations, Journal of Computational Physics, 72, 2, 449-466, (1987) · Zbl 0631.76085 · doi:10.1016/0021-9991(87)90093-3
[21] Peraire, J.; Peiro, J.; Formaggia, L.; Morgan, K.; Zienkiewicz, O. C., Finite element euler computations in three dimensions, International Journal for Numerical Methods in Engineering, 26, 10, 2135-2159, (1988) · Zbl 0665.76073 · doi:10.1002/nme.1620261002
[22] Lo, S. H., Volume discretization into tetrahedral-II. 3D triangulation by advancing front approach, Computers & Structures, 39, 5, 501-511, (1991) · Zbl 0764.65073
[23] Löhner, R., Extensions and improvements of the advancing front grid generation technique, Communications in Numerical Methods in Engineering, 12, 10, 683-702, (1996) · Zbl 0862.65051 · doi:10.1002/(SICI)1099-0887(199610)12:10<683::AID-CNM983>3.0.CO;2-1
[24] Zhou, R.; Zhang, L.; Shu, X.; Zhou, L., Research on surface reconstruction from dense scattered points, Journal of Software, 12, 2, 249-255, (2001)
[25] Qian, J.; Chen, Z.; Zhang, S.; Ye, X., The detection of boundary point of point cloud compression, Journal of Image and Graphics, 10, 2, 164-169, (2005)
[26] Sarrate, J.; Palau, J.; Huerta, A., Numerical representation of the quality measures of triangles and triangular meshes, International Journal for Numerical Methods in Biomedical Engineering, 19, 7, 551-561, (2003) · Zbl 1023.65012 · doi:10.1002/cnm.585
[27] Lo, S. H., Dynamic grid for mesh generation by the advancing front method, Computers & Structures, 123, 1, 15-27, (2013)
[28] Lo, S. H., A hidden-line algorithm using picture subdivision technique, Computers and Structures, 28, 1, 37-45, (1988) · Zbl 0625.73079 · doi:10.1016/0045-7949(88)90089-2
[29] Aubry, R.; Houzeaux, G.; Vázquez, M., A surface remeshing approach, International Journal for Numerical Methods in Engineering, 85, 12, 1475-1498, (2011) · Zbl 1217.65215 · doi:10.1002/nme.3028
[30] Foucault, G.; Cuillière, J.-C.; François, V.; Léon, J.-C.; Maranzana, R., Generalizing the advancing front method to composite surfaces in the context of meshing constraints topology, Computer-Aided Design, 45, 11, 1408-1425, (2013) · Zbl 1134.65317 · doi:10.1016/j.cad.2013.05.009
[31] Lee, D. T.; Lin, A. K., Generalized Delaunay triangulation for planar graphs, Discrete & Computational Geometry, 1, 3, 201-217, (1986) · Zbl 0596.52007 · doi:10.1007/BF02187695
[32] Nakahashi, K.; Sharov, D., Direct surface triangulation using the advancing front method, Proceedings of the 12th Computational Fluid Dynamics Conference, The American Institute of Aeronautics and Astronautics · doi:10.2514/6.1995-1686
[33] Jeong, W.-K.; Kim, C.-H., Direct reconstruction of a displaced subdivision surface from unorganized points, Graphical Models, 64, 2, 78-93, (2002) · Zbl 1033.68676 · doi:10.1006/gmod.2002.0572
[34] Taubin, G., Curve and surface smoothing without shrinkage, Proceedings of the 5th International Conference on Computer Vision · doi:10.1109/ICCV.1995.466848
[35] Vollmer, J.; Mencl, R.; Müller, H., Improved laplacian smoothing of noisy surface meshes, Computer Graphics Forum, 18, 3, 131-138, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.