×

The Lee–Yang and Pólya–Schur programs. II: Theory of stable polynomials and applications. (English) Zbl 1177.47041

This paper is a continuation of J.Borcea and P.Brändén, [“The Lee-Yang and Pólya-Schur programs.I: Linear operators preserving stability”, Invent.Math.177, No.3, 541–569 (2009; Zbl 1175.47032)].
Let \(K=\mathbb R\) or \(=\mathbb C\). If \(n\) is a positive integer and \(\Omega\subset\mathbb K^n\), a polynomial \(f\in\mathbb K[z_1,\dots,z_n]\) is said to be \(\Omega\)-stable if \(f(z_1,\dots,z_n)\not=0\) whenever \((z_1,\dots,z_n)\in\Omega\). Denote the class of all \(K\)-polynomials in the variables \(z_1,\dots,z_n\) by \(K[z_1,\dots,z_n]\). Also, for \(\kappa\in\mathbb N^n\) let \(K_\kappa[z_1,\dots,z_n] = \{f\in K[z_1,\dots,z_n] : \deg_{z_i}(f)\leq \kappa_i\;\mathrm{for}\;\mathrm{each}\; 1\leq i\leq n\}\), where \(\deg_{z_i}(f)\) is the degree of \(f\) in \(z_i\).
The authors investigate the following problems, which have been previously investigated in a large variety of special cases:
Problem 1: Characterize all linear operators \[ T:\mathbb K_\kappa[z_1,\dots,z_n]\to \mathbb K[z_1,\dots,z_n] \] that preserve \(\Omega\)-stability, where \(\Omega\) is a prescribed subset of \(\mathbb K^n\) and \(\kappa\in\mathbb N^n\).
Problem 2: Characterize all linear operators \[ T:\mathbb K[z_1,\dots,z_n]\to \mathbb K[z_1,\dots,z_n] \] that preserve \(\Omega\)-stability, where \(\Omega\) is a prescribed subset of \(\mathbb K^n\).
In this second part, the authors extend their general approach to a variety of topics. The table of contents is as follows: (1.) Symmetrization Procedures. (2.) Grace–Walsh–Szegő Coincidence Theorem. (3) Master Composition Theorems. (4.) Hard Pólya–Schur Theory: Bounded Degree Multiplier Sequences. (5.) Multivariate Apolarity. (6.) Hard Lieb–Sokal Lemmas. (7.) Transcendental Symbols and the Weyl Algebra. (8.) Applications: Recovering Lee–Yang and Heilmann–Lieb Type Theorems.

MSC:

47B38 Linear operators on function spaces (general)
05A15 Exact enumeration problems, generating functions
05C70 Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.)
30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral)
32A60 Zero sets of holomorphic functions of several complex variables
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

Citations:

Zbl 1175.47032

References:

[1] Adams, Sums of entire functions having only real zeros, Proc Amer Math Soc 135 (12) pp 3857– (2007) · Zbl 1133.30001
[2] Asano, Theorems on the partition functions of the Heisenberg ferromagnets, J Phys Soc Japan 29 pp 350– (1970) · Zbl 1230.82052
[3] Biskup, Partition function zeros at first-order phase transitions: a general analysis, Comm Math Phys 251 (1) pp 79– (2004) · Zbl 1088.82010
[4] Biskup, Partition function zeros at first-order phase transitions: Pirogov-Sinai theory, J Statist Phys 116 (1) pp 97– (2004) · Zbl 1142.82328
[5] Borcea, J.; Brändén, P. Multivariate Pólya-Schur classification problems in the Weyl algebra. Preprint. arXiv: math.CA/0606360, 2006.
[6] Borcea, Applications of stable polynomials to mixed determinants: Johnson’s conjectures, unimodality, and symmetrized Fischer products, Duke Math J 143 (2) pp 205– (2008) · Zbl 1151.15013
[7] Borcea, Pólya-Schur master theorems for circular domains and their boundaries, Ann of Math (2) 170 pp 465– (2009) · Zbl 1184.30004
[8] Borcea, The Lee-Yang and Pólya-Schur programs. I. Linear operators preserving stability, Invent Math · Zbl 1175.47032
[9] Borcea, J.; Brändén, P.; Csordas, G.; Vinnikov, V. Pólya-Schur-Lax problems: hyperbolicity and stability preservers. Workshop report, American Institute of Mathematics Research Center, 2007.
[10] Available at: www.aimath.org/pastworkshops/polyaschurlaxrep.pdf
[11] Borcea, Negative dependence and the geometry of polynomials, J Amer Math Soc 22 (2) pp 521– (2009) · Zbl 1206.62096
[12] Brändén, Polynomials with the half-plane property and matroid theory, Adv Math 216 (1) pp 302– (2007)
[13] Bruijn, An analogue of Grace’s apolarity theorem, Nieuw Arch Wiskunde (2) 23 pp 69– (1949) · Zbl 0031.21201
[14] Bruijn, Some theorems on the roots of polynomials, Nieuw Arch Wiskunde (2) 23 pp 66– (1949) · Zbl 0032.00201
[15] Cardon, Sums of exponential functions having only real zeros, Manuscripta Math 113 (3) pp 307– (2004) · Zbl 1051.30032
[16] Cardon, Fourier transforms having only real zeros, Proc Amer Math Soc 133 (5) pp 1349– (2005) · Zbl 1083.30005
[17] Choe, Homogeneous multivariate polynomials with the half-plane property, Adv in Appl Math 32 (1) pp 88– (2004) · Zbl 1054.05024
[18] Craven, Multiplier sequences for fields, Illinois J Math 21 (4) pp 801– (1977) · Zbl 0389.12009
[19] Craven, Value distribution theory and related topics 3 pp 131– (2004)
[20] Craven, The zeros of derivatives of entire functions and the Pólya-Wiman conjecture, Ann of Math (2) 125 (2) pp 405– (1987)
[21] Csordas, Linear operators and the distribution of zeros of entire functions, Complex Var Elliptic Equ 51 (7) pp 625– (2006) · Zbl 1104.30017
[22] Fisk, S. Polynomials, roots, and interlacing. arXiv: math/0612833v2, 2008.
[23] Grace, The zeros of a polynomial, Proc Cambridge Philos Soc 11 pp 352– (1902) · JFM 33.0121.04
[24] Heilmann, Theory of monomer-dimer systems, Comm Math Phys 25 pp 190– (1972) · Zbl 0228.05131
[25] Helton, Linear matrix inequality representation of sets, Comm Pure Appl Math 60 (5) pp 654– (2007) · Zbl 1116.15016
[26] Hinkkanen, Lipa’s legacy (New York, 1995) 211 pp 285– (1997) · doi:10.1090/conm/211/02826
[27] Iserles, On transformations and zeros of polynomials, Rocky Mountain J Math 21 (1) pp 331– (1991) · Zbl 0754.26007
[28] Kenyon, Dimers and amoebae, Ann of Math (2) 163 (3) pp 1019– (2006)
[29] Kung, The invariant theory of binary forms, Bull Amer Math Soc (NS) 10 (1) pp 27– (1984) · Zbl 0577.15020
[30] Lawler, Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math 187 (2) pp 237– (2001) · Zbl 1005.60097
[31] Lawler, Values of Brownian intersection exponents. II. Plane exponents, Acta Math 187 (2) pp 275– (2001) · Zbl 0993.60083
[32] Lee, Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model, Physical Rev (2) 87 pp 410– (1952) · Zbl 0048.43401
[33] Levin, Distribution of zeros of entire functions 5 (1980)
[34] Lieb, A general Lee-Yang theorem for one-component and multicomponent ferromagnets, Comm Math Phys 80 (2) pp 153– (1981)
[35] Liggett, Interacting particle systems 276 (1985) · doi:10.1007/978-1-4613-8542-4
[36] Liggett, Distributional limits for the symmetric exclusion process, Stochastic Process Appl 119 (1) pp 1– (2009) · Zbl 1172.60031
[37] Marden, The geometry of the zeros of a polynomial in a complex variable 3 (1949) · Zbl 0038.15303 · doi:10.1090/surv/003
[38] Newman, Zeros of the partition function for generalized Ising systems, Comm Pure Appl Math 27 pp 143– (1974)
[39] Newman, Gaussian correlation inequalities for ferromagnets, Z Wahrscheinlichkeitstheorie und Verw Gebiete 33 (2) pp 75– (1975) · Zbl 0297.60053
[40] Newman, Inequalities for Ising models and field theories which obey the Lee-Yang theorem, Comm Math Phys 41 pp 1– (1975)
[41] Pólya, Bemerkung über die Integraldarstellung der Riemannsche {\(\xi\)}-Funktion, Acta Math 48 (3) pp 305– (1926)
[42] Pólya, Location of zeros 8 (1974)
[43] Pólya, Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen, J Reine Angew Math 144 pp 89– (1914) · JFM 45.0176.01
[44] Pólya, Problems and theorems in analysis. II. Theory of functions, zeros, polynomials, determinants, number theory, geometry 216 (1976)
[45] Rahman, Analytic theory of polynomials 26 (2002)
[46] Rota, Two turning points in invariant theory, Math Intelligencer 21 pp 20– (1999) · Zbl 0922.13002
[47] Ruelle, Extension of the Lee-Yang circle theorem, Phys Rev Lett 26 pp 303– (1971)
[48] Ruelle, Some remarks on the location of zeroes of the partition function for lattice systems, Comm Math Phys 31 pp 265– (1973) · Zbl 1125.82311
[49] Ruelle, Is our mathematics natural? The case of equilibrium statistical mechanics, Bull Amer Math Soc (NS) 19 (1) pp 259– (1988) · Zbl 0649.00028
[50] Ruelle, Counting unbranched subgraphs, J Algebraic Combin 9 (2) pp 157– (1999) · Zbl 0915.05068
[51] Ruelle, Statistical mechanics: rigorous results (1999) · Zbl 1016.82500 · doi:10.1142/4090
[52] Ruelle, Zeros of graph-counting polynomials, Comm Math Phys 200 (1) pp 43– (1999) · Zbl 0917.05074
[53] Ruelle, Foundations of computational mathematics (Hong Kong, 2000) pp 405– (2002) · doi:10.1142/9789812778031_0016
[54] Schur, Zwei Sätze über algebraische Gleichungen mit lauter reellen Wurzeln, J Reine Angew Math 144 pp 75– (1923)
[55] Scott, The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma, J Stat Phys 118 (5) pp 1151– (2005)
[56] Shepherd-Barron, Apolarity and its applications, Invent Math 97 (2) pp 433– (1989) · Zbl 0709.14027
[57] Smirnov, Critical exponents for two-dimensional percolation, Math Res Lett 8 (5) pp 729– (2001) · Zbl 1009.60087 · doi:10.4310/MRL.2001.v8.n6.a4
[58] Sokal, Surveys in combinatorics 2005 327 pp 173– (2005) · doi:10.1017/CBO9780511734885.009
[59] Szegö, Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math Z 13 (1) pp 28– (1922)
[60] Wagner, Multipartition series, SIAM J Discrete Math 9 (4) pp 529– (1996) · Zbl 0861.05002
[61] Wagner, Weighted enumeration of spanning subgraphs with degree constraints, J Combin Theory Ser B 99 (2) pp 347– (2009) · Zbl 1184.05066
[62] Walsh, On the location of the roots of certain types of polynomials, Trans Amer Math Soc 24 (3) pp 163– (1922)
[63] Yang, Statistical theory of equations of state and phase transitions. I. Theory of condensation, Physical Rev (2) 87 pp 404– (1952) · Zbl 0048.43305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.