×

Data-informed method of distributions for hyperbolic conservation laws. (English) Zbl 1436.35330

Summary: Nonlinear hyperbolic balance laws with uncertain (random) initial data are ubiquitous in a plethora of transport phenomena that often exhibit shocks. We develop the method of distributions for such problems by adding a model error term to a deterministic equation for the cumulative distribution function (CDF) of the system states. We use two alternative strategies, Newtonian relaxation and neural networks, to infer this term from observations of the system dynamics. The former strategy is amenable to theoretical analysis of its convergence with respect to data sparsity, while the latter offers more flexibility. The CDF equation is exact for linear conservation laws and nonlinear conservation laws with a smooth solution, such that the CDF equation can be used to formulate predictions at times when observations cease to be available. Whenever shocks develop as a result of the nonlinearity, observations are used to detect the discrepancy that emerges as model error. Spatial data density is crucial for good interpolation accuracy, whereas long temporal sequences of observations improve future projections.

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
35L65 Hyperbolic conservation laws
35L45 Initial value problems for first-order hyperbolic systems
35L60 First-order nonlinear hyperbolic equations
Full Text: DOI

References:

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-scale Machine Learning on Heterogeneous Systems, 2015, https://www.tensorflow.org/, software available from http://tensorflow.org.
[2] A. A. Alawadhi, F. Boso, and D. M. Tartakovsky, Method of distributions for water-hammer equations with uncertain parameters, Water Resour. Res., 54 (2018), pp. 9398-9411.
[3] D. Auroux and J. Blum, Back and forth nudging algorithm for data assimilation problems, C. R. Math. Acad. Sci. Paris, 340 (2005), pp. 873-878. · Zbl 1074.34006
[4] D. Auroux and M. Nodet, The back and forth nudging algorithm for data assimilation problems: Theoretical results on transport equations, ESAIM Control Optim. Calc. Var., 18 (2012), pp. 318-342. · Zbl 1252.65159
[5] S. Blandin, A. Couque, A. Bayen, and D. Work, On sequential data assimilation for scalar macroscopic traffic flow models, Phys. D, 241 (2012), pp. 1421-1440. · Zbl 1247.90087
[6] F. Boso, S. V. Broyda, and D. M. Tartakovsky, Cumulative distribution function solutions of advection-reaction equations with uncertain parameters, Proc. R. Soc. A, 470 (2014), 20140189.
[7] A.-C. Boulanger, P. Moireau, B. Perthame, and J. Saint-Marie, Data assimilation for hyperbolic conservation laws. A Luenberger observer approach based on a kinetic description, Commun. Math. Sci., 13 (2015), pp. 587-622. · Zbl 1329.35195
[8] G. Craciun, A. Brown, and A. Friedman, A dynamical system model of neurofilament transport in axons, J. Theoret. Biol., 237 (2005), pp. 316-322. · Zbl 1445.92053
[9] C. F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transp. Res. B, 28 (1994), pp. 269-287.
[10] B. Després, From uncertainty propagation in transport equations to kinetic polynomials, in Uncertainty Quantification for Hyperbolic and Kinetic Equations, S. Jin and L. Pareschi, eds., SEMA SIMAI Springer Ser. 14, Springer, Cham, 2017, pp. 127-150. · Zbl 1459.65206
[11] S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Mat. Sb., 89 (1959), pp. 271-306. · Zbl 0171.46204
[12] B. Greenshields, J. R. Bibbins, W. S. Channing, and H. Miller, A Study of Traffic Capacity, in Highway Research Board Proceedings, Volume 14, National Research Council (USA), Highway Research Board, 1935.
[13] J. E. Guyer, D. Wheeler, and J. A. Warren, FiPy: Partial differential equations with Python, Comput. Sci. Engrg., 11 (2009), pp. 6-15.
[14] J. C. Herrera and A. M. Bayen, Incorporation of Lagrangian measurements in freeway traffic state estimation, Transport. Res. B Meth., 44 (2010), pp. 460-481.
[15] K. Hornik, M. Stinchcombe, and H. White, Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks, Neural Net., 3 (1990), pp. 551-560.
[16] A. H. Jazwinski, Stochastic Processes and Filtering, Dover, Mineola, NY, 1970. · Zbl 0203.50101
[17] S. Jin and L. Pareschi, Uncertainty Quantification for Hyperbolic and Kinetic Equations, SEMA SIMAI Springer Series, 14. Springer, Cham, 2017. · Zbl 1393.35003
[18] S. Jin, D. Xiu, and X. Zhu, A well-balanced stochastic Galerkin method for scalar hyperbolic balance laws with random inputs, J. Sci. Comput., 67 (2016), pp. 1198-1218. · Zbl 1342.65010
[19] S. Lakshmivarahan and J. M. Lewis, Nudging Methods: A Critical Overview, in Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II), Springer, 2013, pp. 27-57.
[20] J. Le Ny and G. J. Pappas, Differentially private filtering, IEEE Trans. Automat. Control, 59 (2014), pp. 341-354. · Zbl 1360.93701
[21] L. Lei and J. P. Hacker, Nudging, ensemble, and nudging ensembles for data assimilation in the presence of model error, Mon. Weather Rev., 143 (2015), pp. 2600-2610.
[22] P.-L. Lions, B. Perthame, and E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc., 7 (1994), pp. 169-191. · Zbl 0820.35094
[23] B. Perthame, Kinetic Formulation of Conservation Laws, Oxford Lecture Series in Math. Appl. 21, Oxford University Press, New York, 2002. · Zbl 1030.35002
[24] M. Raissi, Deep hidden physics models: Deep learning of nonlinear partial differential equations, J. Mach. Learn. Res., 19 (2018), 25. · Zbl 1439.68021
[25] D. R. Stauffer and N. L. Seaman, Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data, Mon. Weather Rev., 118 (1990), pp. 1250-1277.
[26] D. M. Tartakovsky, M. Dentz, and P. C. Lichtner, Probability density functions for advective-reactive transport in porous media with uncertain reaction rates, Water Resour. Res., 45 (2009), W07414, https://doi.org/10.1029/2008WR007383.
[27] D. M. Tartakovsky and P. A. Gremaud, Method of distributions for uncertainty quantification, in Handbook of Uncertainty Quantification, R. Ghanem, D. Higdon, and H. Owhadi, eds., Springer, Cham, 2017, pp. 763-783, https://doi.org/10.1007/978-3-319-12385-1_27.
[28] E. F. Toro, NUMERICA, a Library of Source Codes for Teaching, Research and Applications, CD-ROM, Numeritek Ltd., Cheshire, UK, 1999.
[29] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer-Verlag, Berlin, Heidelberg, 2013.
[30] D. Venturi, D. M. Tartakovsky, A. M. Tartakovsky, and G. E. Karniadakis, Exact PDF equations and closure approximations for advective-reactive transport, J. Comput. Phys., 243 (2013), pp. 323-343. · Zbl 1349.35068
[31] P. Vidard, F.-X. L. Dimet, and A. Piacentini, Determination of optimal nudging coefficients, Tellus A: Dynamic Meteorology and Oceanography, 55 (2003), pp. 1-15.
[32] P. Wang and D. M. Tartakovsky, Uncertainty quantification in kinematic wave models, J. Comput. Phys., 231 (2012), pp. 7868-7880, https://doi.org/10.1016/j.jcp.2012.07.030. · Zbl 1257.35124
[33] P. Wang, D. M. Tartakovsky, K. D. Jarman, Jr., and A. M. Tartakovsky, CDF solutions of Buckley-Leverett equation with uncertain parameters, Multiscale Model. Simul., 11 (2013), pp. 118-133, https://doi.org/10.1137/120865574. · Zbl 1267.76088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.