×

Liénard systems and potential-Hamiltonian decomposition. I: Methodology. (English. Abridged French version) Zbl 1111.37011

A system of ordinary differential equations on the plane, \(\dot x = f(x,y)\), \(\dot y = g(x,y)\), where \(f\) and \(g\) are polynomials, is called potential-Hamiltonian decomposable (PH-decomposable) if there exist polynomial functions \(P, H : \mathbb{R}^2 \to \mathbb{R}\) such that \(f = -P_x + H_y\) and \(g = -P_y - H_x\), so that the correspodning vector field decomposes as the sum of a gradient and a Hamiltonian vector field, \(-\text{grad}\,P + JdH\). The authors obtain an explicit PH-decomposition for any polynomial system. They indicate its usefulness in studying limit cycles that arise in Liénard systems.
[See also the following parts: part II: ibid., No. 3, 191–194 (2007 ; Zbl 1111.37010) and part III: ibid., No. 4, 253–258 (2007; Zbl 1111.37012)].

MSC:

37C10 Dynamics induced by flows and semiflows
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations

References:

[1] Cinquin, O.; Demongeot, J., High-dimensional switches and the modeling of cellular differentiation, J. Theoret. Biol., 233, 391-411 (2005) · Zbl 1443.92054
[2] Clerc, M.; Coullet, P.; Tirapegui, E., The stationary instability in quasi-reversible systems and the Lorenz pendulum, Int. J. Bifurcation and Chaos, 11, 591-603 (2001) · Zbl 1090.70506
[3] Collela, P.; Trebovich, D. P., Numerical simulation of incompressible viscous flow in deforming domains, Proc. Natl. Acad. Sci. USA, 96, 5378-5381 (1999) · Zbl 0938.76063
[4] Demongeot, J., Theoretical study of attractors in enzymatic systems, (Paulré, B. E., System Dynamics and Analysis of Change (1981), North-Holland: North-Holland Amsterdam), 102-122
[5] Demongeot, J., Existence de solutions périodiques pour une classe de systèmes différentiels gouvernant la cinétique de chaînes enzymatiques oscillantes, (Lecture Notes in Biomathematics, vol. 41 (1981)), 40-62 · Zbl 0467.92012
[6] Demongeot, J.; Aracena, J.; Thuderoz, F.; Baum, T. P.; Cohen, O., Genetic regulation networks: circuits, regulons and attractors, C. R. Acad. Sci. Biologies, 326, 171-188 (2003)
[7] Demongeot, J.; Thomas, R.; Thellier, M., A mathematical model for storage and recall functions in plants, C. R. Acad. Sci., Sciences de la Vie, 323, 93-97 (2000)
[8] El Kacimi-Alaoui, A.; Hector, G., Basic Hodge decomposition for a Riemannian foliation, Ann. Institut Fourier, 36, 207-227 (1986) · Zbl 0586.57015
[9] Isalan, M.; Lemerle, C.; Serrano, L., Engineering gene networks to emulate Drosophila embryonic pattern formation, PLoS Biology, 3, 488-496 (2005)
[10] Iwaniec, T.; Scott, C.; Stroffolini, B., Nonlinear Hodge theory on manifolds with boundary, Ann. Mat. Pura Appl., 177, 37-115 (1999) · Zbl 0963.58003
[11] Jolliot, A.; Prochiantz, A., Transduction peptides: from technology to physiology, Nature Cell Biology, 6, 189-196 (2004)
[12] Lienard, A., Etude des oscillations entretenues, Revue Générale de l’Electricité, 23, 901-912 (1928), 946-954
[13] Lotka, A. J., Contribution to the theory of periodic reactions, J. Phys. Chem., 14, 271-279 (1910)
[14] Nazarenko, A., Canonical realization of the Poincaré algebra for a relativistic system of charged particles plus electromagnetic field, Proc. Institute of Mathematics of NAS of Ukraine, 30, 343-349 (2000) · Zbl 0977.78003
[15] Pham Dinh, T.; Demongeot, J.; Baconnier, P.; Benchetrit, G., Simulation of a biological oscillator: the respiratory rhythm, J. Theoret. Biol., 103, 113-132 (1983) · Zbl 0514.92005
[16] Quapp, W., Reaction pathways and projection operators: application to string methods, J. Comput. Chem., 25, 1277-1285 (2004)
[17] Skinner, F. K.; Kopell, N.; Marder, E., Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks, J. Comput. Neurosci., 1, 69-87 (1994) · Zbl 0838.92002
[18] Taylor, A. L.; Cottrell, G. W.; Kristan, W. B., Analysis of oscillations in a reciprocally inhibitory network with synaptic depression, Neural Computation, 14, 561-581 (2002) · Zbl 0989.92010
[19] Thellier, M.; Demongeot, J.; Guespin, J.; Ripoll, C.; Norris, V.; Thomas, R., A logical (discrete) formulation model for the storage and recall of environmental signals in plants, Plant Biol., 10, 1055-1075 (2004)
[20] van der Pol, B.; van der Mark, J., The heartbeat considered as a relaxation oscillation and an electrical model of the heart, Philos. Mag., 6, 763-775 (1928)
[21] van der Pol, B.; van der Mark, J., Le battement du cœur considéré comme oscillation de relaxation et un modèle électrique du cœur, Onde élec., 365-392 (1928)
[22] Volterra, V., Fluctuations dans la lutte pour la vie, leurs lois fondamentales et de réciprocité, Bull. Soc. Math. France, 67, 135-151 (1939) · Zbl 0154.45801
[23] Wang, X. J.; Rinzel, J., Alternating and synchronous rhythms in reciprocally inhibitory model neurons, Neural Computation, 4, 44-97 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.