×

Geometrical level set reinitialization using closest point method and kink detection for thin filaments, topology changes and two-phase flows. (English) Zbl 1537.76086

Summary: We introduce a robust and high order strategy to perform the reinitialization in a level set framework. The reinitialization by closest points (RCP) method is based on geometric considerations. It relies on a gradient descent to find the closest points at the interface in order to solve the eikonal equation and thus reinitializing the level set field. Furthermore, a new algorithm, also based on a similar geometric approach, is introduced to detect precisely all the ill-defined points of the level set. These points, also referred to as kinks, can mislead the gradient descent and more widely impact the accuracy of level set methods. This algorithm, coupled with the precise computation of the closest points of the interface, permits the novel method to be robust and accurate when performing the reinitialization every time step after solving the advection equation. Furthermore, they both require very few given parameters with the advantage of being based on a geometrical approach and independent of the application. The proposed method was tested on various benchmarks, and demonstrated equivalent or even better results compared to solving the Hamilton-Jacobi equation.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
76T10 Liquid-gas two-phase flows, bubbly flows
Full Text: DOI

References:

[1] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[2] Sethian, J. A., Evolution, implementation, and application of level set and fast marching methods for advancing fronts, J. Comput. Phys., 169, 2, 503-555 (2001) · Zbl 0988.65095
[3] Zhao, H., A fast sweeping method for Eikonal equations, Math. Comput., 74, 250, 603-628 (2004) · Zbl 1070.65113
[4] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 1, 146-159 (1994) · Zbl 0808.76077
[5] Sussman, M.; Puckett, E. G., A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162, 2, 301-337 (2000) · Zbl 0977.76071
[6] Russo, G.; Smereka, P., A remark on computing distance functions, J. Comput. Phys., 163, 1, 51-67 (2000) · Zbl 0964.65089
[7] Hartmann, D.; Meinke, M.; Schröder, W., The constrained reinitialization equation for level set methods, J. Comput. Phys., 229, 5, 1514-1535 (2010) · Zbl 1329.76259
[8] du Chéné, A.; Min, C.; Gibou, F., Second-order accurate computation of curvatures in a level set framework using novel high-order reinitialization schemes, J. Sci. Comput., 35, 2, 114-131 (2008) · Zbl 1203.65043
[9] Chopp, D. L., Some improvements of the fast marching method, SIAM J. Sci. Comput., 23, 1, 230-244 (2001), publisher: Society for Industrial and Applied Mathematics · Zbl 0991.65105
[10] Anumolu, L.; Trujillo, M. F., Gradient augmented reinitialization scheme for the level set method, Int. J. Numer. Methods Fluids, 73, 12, 1011-1041 (2013),_eprint: · Zbl 1455.76122
[11] Ervik, A.; Lervag, K. Y.; Munkejord, S. T., A robust method for calculating interface curvature and normal vectors using an extracted local level set, J. Comput. Phys., 257, 259-277 (2014) · Zbl 1349.76457
[12] Kataoka, I., Local instant formulation of two-phase flow, Int. J. Multiph. Flow, 12, 5, 745-758 (1986) · Zbl 0613.76114
[13] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100, 2, 335-354 (1992) · Zbl 0775.76110
[14] Francois, M. M.; Cummins, S. J.; Dendy, E. D.; Kothe, D. B.; Sicilian, J. M.; Williams, M. W., A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework, J. Comput. Phys., 213, 1, 141-173 (2006) · Zbl 1137.76465
[15] Herrmann, M., A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids, J. Comput. Phys., 227, 4, 2674-2706 (2008) · Zbl 1388.76252
[16] Coquerelle, M.; Glockner, S., A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces, J. Comput. Phys., 305, 838-876 (2016) · Zbl 1349.76053
[17] Trujillo, M. F.; Anumolu, L.; Ryddner, D., The distortion of the level set gradient under advection, J. Comput. Phys., 334, 81-101 (2017) · Zbl 1375.76199
[18] Denner, F.; van Wachem, B. G.M., Numerical time-step restrictions as a result of capillary waves, J. Comput. Phys., 285, 24-40 (2015) · Zbl 1351.76028
[19] Luddens, F.; Bergmann, M.; Weynans, L., Enablers for high-order level set methods in fluid mechanics: enablers for high order level set methods in fluid mechanics, Int. J. Numer. Methods Fluids, 79, 12, 654-675 (2015) · Zbl 1455.76128
[20] Solomenko, Z.; Spelt, P. D.M.; Náraigh, L. Ó.; Alix, P., Mass conservation and reduction of parasitic interfacial waves in level-set methods for the numerical simulation of two-phase flows: a comparative study, Int. J. Multiph. Flow, 95, 235-256 (2017)
[21] Saye, R., High-order methods for computing distances to implicitly defined surfaces, Commun. Appl. Math. Comput. Sci., 9, 1, 107-141 (2014), publisher: Mathematical Sciences Publishers · Zbl 1316.65030
[22] Macklin, P.; Lowengrub, J., Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth, J. Comput. Phys., 203, 1, 191-220 (2005) · Zbl 1067.65111
[23] Notus computational fluid dynamics
[24] Goda, K., A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, J. Comput. Phys., 30, 1, 76-95 (1979) · Zbl 0405.76017
[25] Desmons, F.; Coquerelle, M., A generalized high-order momentum preserving (homp) method in the one-fluid model for incompressible two phase flows with high density ratio, J. Comput. Phys., 437, Article 110322 pp. (2021) · Zbl 07505907
[26] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 1, 202-228 (1996) · Zbl 0877.65065
[27] Wang, R.; Spiteri, R. J., Linear instability of the fifth-order WENO method, SIAM J. Numer. Anal., 45, 5, 1871-1901 (2007), publisher: Society for Industrial and Applied Mathematics · Zbl 1158.65065
[28] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 3, 335-362 (1979) · Zbl 0416.76002
[29] Bell, J. B.; Colella, P.; Glaz, H. M., A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., 85, 2, 257-283 (1989) · Zbl 0681.76030
[30] LeVeque, R. J., High-resolution conservative algorithms for advection in incompressible flow, SIAM J. Numer. Anal., 33, 2, 627-665 (1996), publisher: Society for Industrial and Applied Mathematics · Zbl 0852.76057
[31] Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchell, I., A hybrid particle level set method for improved interface capturing, J. Comput. Phys., 183, 1, 83-116 (2002) · Zbl 1021.76044
[32] Gunn, R.; Kinzer, G. D., The terminal velocity of fall for water droplets in stagnant air, J. Atmos. Sci., 6, 4, 243-248 (1949), publisher: American Meteorological Society Section: Journal of the Atmospheric Sciences
[33] Hnat, J.; Buckmaster, J., Spherical cap bubbles and skirt formation, Phys. Fluids, 19, 2, 182-194 (1976) · Zbl 0319.76072
[34] Wang, Y.; Simakhina, S.; Sussman, M., A hybrid level set-volume constraint method for incompressible two-phase flow, J. Comput. Phys., 231, 19, 6438-6471 (2012)
[35] Lalanne, B.; Villegas, L. R.; Tanguy, S.; Risso, F., On the computation of viscous terms for incompressible two-phase flows with level set/ghost fluid method, J. Comput. Phys., 301, 289-307 (2015) · Zbl 1349.76352
[36] Jánosi, I. M.; Jan, D.; Szabó, K. G.; Tél, T., Turbulent drag reduction in dam-break flows, Exp. Fluids, 37, 2, 219-229 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.