×

Analysis of discrete data by Conway-Maxwell Poisson distribution. (English) Zbl 1443.62045

Summary: In this paper, we further study the Conway-Maxwell Poisson distribution having one more parameter than the Poisson distribution and compare it with the Poisson distribution with respect to some stochastic orderings used in reliability theory. Likelihood ratio test and the score test are developed to test the importance of this additional parameter. Simulation studies are carried out to examine the performance of the two tests. Two examples are presented, one showing overdispersion and the other showing underdispersion, to illustrate the procedure. It is shown that the COM-Poisson model fits better than the generalized Poisson distribution.

MSC:

62E10 Characterization and structure theory of statistical distributions
62N05 Reliability and life testing
60E15 Inequalities; stochastic orderings
62F03 Parametric hypothesis testing
Full Text: DOI

References:

[1] Atkinson, AC; Yeh, L, Inference for sichel’s compound Poisson distribution, J. Am. Stat. Assoc., 77, 153-158, (1982) · Zbl 0521.62022 · doi:10.1080/01621459.1982.10477779
[2] Cancho, VG; Castro, M; Rodrigues, J, A Bayesian analysis of the Conway-Maxwell-Poisson cure rate model, Stat. Pap., 53, 165-176, (2012) · Zbl 1244.62030 · doi:10.1007/s00362-010-0326-5
[3] Consul, PC; Jain, GC, On some interesting properties of the generalized Poisson distribution, Biometrische Z, 15, 495-500, (1973) · Zbl 0269.60009 · doi:10.1002/bimj.19730150707
[4] Consul, P.C.: Generalized Poisson Distributions. Marcel Dekker, New York (1989) · Zbl 0691.62015
[5] Gupta, PL; Gupta, RC; Tripathi, RC, On the monotonic properties of discrete failure rates, J. Stat. Plan. Inference, 65, 255-268, (1997) · Zbl 0908.62099 · doi:10.1016/S0378-3758(97)00064-5
[6] Gupta, PL; Gupta, RC; Ong, SH; Srivastava, HM, A study of Hurwitz-lerch-zeta distribution with application, Appl. Math. Comput., 196, 521-531, (2008) · Zbl 1131.62093 · doi:10.1016/j.amc.2007.06.012
[7] Gupta, PL; Gupta, RC; Tripathi, RC, Score test for zero inflated generalized Poisson regression model, Commun. Stat. Theory Methods, 33, 47-64, (2004) · Zbl 1185.62041 · doi:10.1081/STA-120026576
[8] Gupta, PL; Gupta, RC; Tripathi, RC, Analysis of zero adjusted count data, Comput. Stat. Data Anal., 23, 207-218, (1996) · Zbl 0875.62096 · doi:10.1016/S0167-9473(96)00032-1
[9] Gupta, RC, Modified power series distributions and some of its applications, Sankhya Ser. B, 36, 288-298, (1974) · Zbl 0318.62009
[10] Gupta, RC, Maximum likelihood estimation of a modified power series distribution and some of its applications, Commun. Stat. Theory Methods, 4, 689-697, (1975) · Zbl 0308.62022
[11] Gupta, RC; Ong, SH, A new generalization of the negative binomial distribution, Comput. Stat. Data Anal., 45, 287-300, (2004) · Zbl 1430.62036 · doi:10.1016/S0167-9473(02)00301-8
[12] Gupta, RC; Ong, SH, Analyses of long-tailed count data by Poisson mixtures, Commun. Stat. Theory Methods, 34, 557-573, (2005) · Zbl 1062.62022 · doi:10.1081/STA-200052144
[13] Hasselblad, V, Estimation of finite mixtures of distributions from the exponential family, J. Am. Stat. Assoc., 64, 1459-1471, (1969) · doi:10.1080/01621459.1969.10501071
[14] Kadane, JB; Krishan, R; Shmueli, G, A data disclosure policy for count data based on the COM-Poisson distribution, Manag. Sci., 52, 1610-1617, (2006) · doi:10.1287/mnsc.1060.0562
[15] Kadane, JB; Shmeuli, G; Munka, TP; Borle, S; Boatwright, P, Conjugate analysis of the Conway-Maxwell-Poisson distribution, Bayesian Anal., 2, 363-374, (2006) · Zbl 1331.62086 · doi:10.1214/06-BA113
[16] Kokonendji, CC; Mizere, D; Balakrishnan, N, Connections of the Poisson weight function to overdispersion and underdispersion, J. Stat. Plan. Inference, 138, 1287-1296, (2008) · Zbl 1133.62007 · doi:10.1016/j.jspi.2007.05.028
[17] Kemp, AW, Classes of discrete lifetime distributions, Commun. Stat. Theory Methods, 33, 3069-3093, (2004) · Zbl 1087.62016 · doi:10.1081/STA-200039051
[18] Lee, PA; Ong, SH; Srivastava, HM, Some integrals of products of Laguerre polynomials, Int. J. Comput. Math., 78, 303-321, (2001) · Zbl 1018.33009 · doi:10.1080/00207160108805112
[19] Metropolis, N; Rosenbluth, AW; Rosenbluth, M; Teller, AH; Teller, E, Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1092, (1953) · Zbl 1431.65006 · doi:10.1063/1.1699114
[20] Minka, T.P., Shmueli, G, Kadane, J.B., Borle, S., Boatwright, P.: Computing with the COM-Poisson distribution. Technical Report #776, Department of Statistics, Carnegie Mellon University. http://www.stat.cmu.edu/tr/tr776/tr776.html (2003) · Zbl 1331.62086
[21] Mullahay, J, Heterogeneity, excess zeros, and the structure of count data models, J. Appl. Econ., 12, 337-350, (1997) · doi:10.1002/(SICI)1099-1255(199705)12:3<337::AID-JAE438>3.0.CO;2-G
[22] Ng, CM; Ong, SH; Srivastava, HM, Parameter estimation by Hellinger type distance for multivariate distributions based on probability generating functions, Appl. Math. Model., 37, 7374-7385, (2013) · Zbl 1426.62086 · doi:10.1016/j.apm.2013.02.044
[23] Ord, JK; Whitmore, GA, The Poisson-inverse Gaussian distribution as a model for species abundance, Commun. Stat. Theory Methods, 15, 853-871, (1986) · Zbl 0603.62113 · doi:10.1080/03610928608829156
[24] Rodrigues, J; Castro, M; Cancho, VG; Balakrishnan, N, COM Poisson cure rate survival models and an application to a cutaneous melanoma data, J. Stat. Plan. Inference, 139, 3605-3611, (2009) · Zbl 1173.62074 · doi:10.1016/j.jspi.2009.04.014
[25] Rueda, R; O’Reilly, F, Tests of fit for discrete distributions based on the probability generating function, Commun. Stat. Simul. Comput., 28, 259-274, (1999) · Zbl 1054.62546 · doi:10.1080/03610919908813547
[26] Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, Berlin, Heidelberg, New York (2007) · Zbl 1111.62016 · doi:10.1007/978-0-387-34675-5
[27] Shmueli, G; Minka, TP; Kadane, JB; Borle, S; Boatwright, S, A useful distribution for Fitting discrete data-revival of the Conway-Maxwell-Poisson distribution, Appl. Stat., 54, 127-142, (2005) · Zbl 1490.62058
[28] Sim, SZ; Ong, SH, Parameter estimation for discrete distributions by generalized Hellinger-type divergence based on probability generating function, Commun. Stat. Simul. Comput., 39, 305-314, (2010) · Zbl 1184.62027 · doi:10.1080/03610910903443980
[29] Steutel, FW; Kotz, S (ed.); Johonson, NL (ed.); Read, CB (ed.), Logconcave and log-convex distributions, No. 5, 116-117, (1985), New york
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.