×

Host-virus evolutionary dynamics with specialist and generalist infection strategies: bifurcations, bistability, and chaos. (English) Zbl 1437.92079

Summary: In this work, we have investigated the evolutionary dynamics of a generalist pathogen, e.g., a virus population, that evolves toward specialization in an environment with multiple host types. We have particularly explored under which conditions generalist viral strains may rise in frequency and coexist with specialist strains or even dominate the population. By means of a nonlinear mathematical model and bifurcation analysis, we have determined the theoretical conditions for stability of nine identified equilibria and provided biological interpretation in terms of the infection rates for the viral specialist and generalist strains. By means of a stability diagram, we identified stable fixed points and stable periodic orbits, as well as regions of bistability. For arbitrary biologically feasible initial population sizes, the probability of evolving toward stable solutions is obtained for each point of the analyzed parameter space. This probability map shows combinations of infection rates of the generalist and specialist strains that might lead to equal chances for each type becoming the dominant strategy. Furthermore, we have identified infection rates for which the model predicts the onset of chaotic dynamics. Several degenerate Bogdanov-Takens and zero-Hopf bifurcations are detected along with generalized Hopf and zero-Hopf bifurcations. This manuscript provides additional insights into the dynamical complexity of host-pathogen evolution toward different infection strategies.
©2020 American Institute of Physics

MSC:

92C60 Medical epidemiology
92D30 Epidemiology

Software:

MATCONT

References:

[1] Sanjuán, R., From molecular genetics to phylodynamics: Evolutionary relevance of mutation rates across viruses, PLoS Pathog., 8, 5, e1002685 (2012) · doi:10.1371/journal.ppat.1002685
[2] Jenkins, G. M.; Rambaut, A.; Pybus, O. G.; Holmes, E. C., Rates of molecular evolution in RNA viruses: A quantitative phylogenetic analysis, J. Mol. Evol., 54, 2, 156-165 (2002) · doi:10.1007/s00239-001-0064-3
[3] Leonard, A. S.; McClain, M. T.; Smith, G. J. D.; Wentworth, D. E.; Halpin, R. A.; Lin, X.; Ransier, A.; Stockwell, T. B.; Das, S. R.; Gilbert, A. S., Deep sequencing of influenza A virus from a human challenge study reveals a selective bottleneck and only limited intrahost genetic diversification, J. Virol., 90, 24, 11247-11258 (2016) · doi:10.1128/JVI.01657-16
[4] Hom, N.; Gentles, L.; Bloom, J. D.; Lee, K. K., Deep mutational scan of the highly conserved influenza A virus M1 matrix protein reveals substantial intrinsic mutational tolerance, J. Virol., 93, 13, e00161 (2019) · doi:10.1128/JVI.00161-19
[5] Fraser, C.; Lythgoe, K.; Leventhal, G. E.; Shirreff, G.; Hollingsworth, T. D.; Alizon, S.; Bonhoeffer, S., Virulence and pathogenesis of HIV-1 infection: An evolutionary perspective, Science, 343, 6177, 1243727 (2014) · doi:10.1126/science.1243727
[6] Lemey, P.; Rambaut, A.; Pybus, O. G., HIV evolutionary dynamics within and among hosts, AIDS Rev., 8, 3, 125-140 (2006)
[7] Simmonds, P.; Aiewsakun, P.; Katzourakis, A., Prisoners of war—Host adaptation and its constraints on virus evolution, Nat. Rev. Microbiol., 17, 321-328 (2018) · doi:10.1038/s41579-018-0120-2
[8] Duffy, S.; Shackelton, L. A.; Holmes, E. C., Rates of evolutionary change in viruses: Patterns and determinants, Nat. Rev. Genet., 9, 4, 267 (2008) · doi:10.1038/nrg2323
[9] Shackelton, L. A.; Parrish, C. R.; Truyen, U.; Holmes, E. C., High rate of viral evolution associated with the emergence of carnivore parvovirus, Proc. Natl. Acad. Sci. U.S.A., 102, 2, 379-384 (2005) · doi:10.1073/pnas.0406765102
[10] Young, N. S.; Brown, K. E., Parvovirus B19, N. Engl. J. Med., 350, 6, 586-597 (2004) · doi:10.1056/NEJMra030840
[11] Didelot, X.; Walker, A. S..; Peto, T. E.; Crook, D. W.; Wilson, D. J., Within-host evolution of bacterial pathogens, Nat. Rev. Microbiol., 14, 3, 150 (2016) · doi:10.1038/nrmicro.2015.13
[12] Bedhomme, S.; Hillung, J.; Elena, S. F., Emerging viruses: Why they are not jacks of all trades?, Curr. Opin. Virol., 10, 1-6 (2015) · doi:10.1016/j.coviro.2014.10.006
[13] Villordo, S. M.; Filomatori, C. V.; Sánchez-Vargas, I.; Blair, C. D.; Gamarnik, A. V., Dengue virus RNA structure specialization facilitates host adaptation, PLoS Pathog., 11, 1, e1004604 (2015) · doi:10.1371/journal.ppat.1004604
[14] Yasuhiro, T., Global Dynamical Properties of Lotka-Volterra Systems (1996), World Scientific · Zbl 0844.34006
[15] Roy, M.; Holt, R. D., Effects of predation on host-pathogen dynamics in sir models, Theor. Popul. Biol., 73, 3, 319-331 (2008) · Zbl 1209.92054 · doi:10.1016/j.tpb.2007.12.008
[16] Begon, M.; Bowers, R. G., Ecology of Infectious Disease in Natural Populations, 478-509 (1995), Cambridge University Press, Cambridge · Zbl 0839.92024
[17] Anderson, R. M.; May, R. M., Coevolution of hosts and parasites, Parasitology, 85, 2, 411-426 (1982) · doi:10.1017/S0031182000055360
[18] Hethcote, H. W. and Levin, S. A., “Periodicity in epidemiological models,” in Applied Mathematical Ecology (Springer, 1989), pp. 193-211.
[19] Anderson, R. M.; May, R. M., Population biology of infectious diseases: Part I, Nature, 280, 5721, 361 (1979) · doi:10.1038/280361a0
[20] Holt, R. D.; Pickering, J., Infectious disease and species coexistence: A model of Lotka-Volterra form, Am. Nat., 126, 2, 196-211 (1985) · doi:10.1086/284409
[21] Begon, M.; Bowers, R. G.; Kadianakis, N.; Hodgkinson, D. E., Disease and community structure: The importance of host self-regulation in a host-host-pathogen model, Am. Nat., 139, 6, 1131-1150 (1992) · doi:10.1086/285379
[22] Gandon, S., Evolution of multihost parasites, Evolution, 58, 3, 455-469 (2004) · doi:10.1111/j.0014-3820.2004.tb01669.x
[23] Gog, J. R.; Swinton, J., A status-based approach to multiple strain dynamics, J. Math. Biol., 44, 2, 169-184 (2002) · Zbl 0991.92016 · doi:10.1007/s002850100120
[24] Bianco, S.; Shaw, L. B., Asymmetry in the presence of migration stabilizes multistrain disease outbreaks, Bull. Math. Biol., 73, 1, 248-260 (2011) · Zbl 1209.92034 · doi:10.1007/s11538-010-9541-4
[25] Nyabadza, F.; Bekele, B. T.; Rúa, M. A.; Malonza, D. M.; Chiduku, N.; Kgosimore, M., The implications of HIV treatment on the HIV-malaria coinfection dynamics: A modeling perspective, Biomed Res. Int., 2015, 659651 (2015) · doi:10.1155/2015/659651
[26] Hoshen, M. B.; Heinrich, R.; Stein, W. D.; Ginsburg, H., Mathematical modelling of the within-host dynamics of Plasmodium falciparum, Parasitology, 121, 3, 227-235 (2000) · doi:10.1017/S0031182099006368
[27] Antia, R.; Levin, B. R.; May, R. M., Within-host population dynamics and the evolution and maintenance of microparasite virulence, Am. Nat., 144, 3, 457-472 (1994) · doi:10.1086/285686
[28] Whitlock, M. C., The red queen beats the jack-of-all-trades: The limitations on the evolution of phenotypic plasticity and niche breadth, Am. Nat., 148, S65-S77 (1996) · doi:10.1086/285902
[29] Li, M. Y.; Shu, H., Joint effects of mitosis and intracellular delay on viral dynamics: Two-parameter bifurcation analysis, J. Math. Biol., 64, 6, 1005-1020 (2012) · Zbl 1303.92060 · doi:10.1007/s00285-011-0436-2
[30] Kuznetsov, V. A.; Makalkin, I. A.; Taylor, M. A.; Perelson, A. S., Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56, 2, 295-321 (1994) · Zbl 0789.92019 · doi:10.1016/S0092-8240(05)80260-5
[31] Alizon, S.; Boldin, B., Within-host viral evolution in a heterogeneous environment: Insights into the HIV co-receptor switch, J. Evol. Biol., 23, 12, 2625-2635 (2010) · doi:10.1111/j.1420-9101.2010.02139.x
[32] Drummond, A.; Pybus, O. G.; Rambaut, A., Inference of viral evolutionary rates from molecular sequences, Adv. Parasitol., 54, 331-358 (2003) · doi:10.1016/s0065-308x(03)54008-8
[33] Nurtay, A.; Hennessy, M. G.; Sardanyés, J.; Alsedà, L.; Elena, S. F., Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits: A bifurcation analysis, R. Soc. Open Sci., 6, 1, 181179 (2019) · doi:10.1098/rsos.181179
[34] Wu, J. T.; Kirn, D. H.; Wein, L. M., Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response, Bull. Math. Biol., 66, 4, 605 (2004) · Zbl 1334.92243 · doi:10.1016/j.bulm.2003.08.016
[35] Blayneh, K. W.; Gumel, A. B.; Lenhart, S.; Clayton, T., Backward bifurcation and optimal control in transmission dynamics of West Nile virus, Bull. Math. Biol., 72, 4, 1006-1028 (2010) · Zbl 1191.92024 · doi:10.1007/s11538-009-9480-0
[36] Pearce, I. G.; Chaplain, M. A. J.; Schofield, P. G.; Anderson, A. R. A.; Hubbard, S. F., Modelling the spatio-temporal dynamics of multi-species host-parasitoid interactions: Heterogeneous patterns and ecological implications, J. Theor. Biol., 241, 4, 876-886 (2006) · Zbl 1447.92358 · doi:10.1016/j.jtbi.2006.01.026
[37] Dieckmann, U.; Marrow, P.; Law, R., Evolutionary cycling in predator-prey interactions: Population dynamics and the red queen, J. Theor. Biol., 176, 1, 91-102 (1995) · doi:10.1006/jtbi.1995.0179
[38] Dercole, F.; Irisson, J.-O.; Rinaldi, S., Bifurcation analysis of a prey-predator coevolution model, SIAM J. Appl. Math., 63, 4, 1378-1391 (2003) · Zbl 1020.92023 · doi:10.1137/S0036139902411612
[39] Begon, M.; Bennett, M.; Bowers, R. G.; French, N. P.; Hazel, S. M.; Turner, J., A clarification of transmission terms in host-microparasite models: Numbers, densities and areas, Epidemiol. Infect., 129, 1, 147-153 (2002) · doi:10.1017/S0950268802007148
[40] Chen, H. Y.; Di Mascio, M.; Perelson, A. S.; Ho, D. D.; Zhang, L., Determination of virus burst size in vivo using a single-cycle SIV in rhesus macaques, Proc. Natl. Acad. Sci. U.S.A., 104, 48, 19079-19084 (2007) · doi:10.1073/pnas.0707449104
[41] Horiuchi, K.; Zinder, N. D., 2 Genetic studies of RNA phages, RNA Phages (1975), Cold Spring Harbor Laboratory: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
[42] Olkkonen, V. M.; Bamford, D. H., Quantitation of the adsorption and penetration stages of bacteriophage \(\varphi 6\) infection, Virology, 171, 1, 229-238 (1989) · doi:10.1016/0042-6822(89)90530-8
[43] Susskind, M. M.; Botstein, D.; Wright, A., Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium: III. Failure of superinfecting phage DNA to enter \(\text{sieA}^+\) lysogens, Virology, 62, 2, 350-366 (1974) · doi:10.1016/0042-6822(74)90398-5
[44] Turner, P. E.; Burch, C. L.; Hanley, K. A.; Chao, L., Hybrid frequencies confirm limit to coinfection in the RNA bacteriophage \(\varphi 6\), J. Virol., 73, 3, 2420-2424 (1999) · doi:10.1128/JVI.73.3.2420-2424.1999
[45] Bull, J. C.; Godfray, H. C. J.; O’Reilly, D. R., Persistence of an occlusion-negative recombinant nucleopolyhedrovirus in Trichoplusia ni indicates high multiplicity of cellular infection, Appl. Environ. Microbiol., 67, 11, 5204-5209 (2001) · doi:10.1128/AEM.67.11.5204-5209.2001
[46] Jung, A.; Maier, R.; Vartanian, J.-P.; Bocharov, G.; Jung, V.; Fischer, U.; Meese, E.; Wain-Hobson, S.; Meyerhans, A., Recombination: Multiply infected spleen cells in HIV patients, Nature, 418, 6894, 144 (2002) · doi:10.1038/418144a
[47] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A., MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Softw., 29, 2, 141-164 (2003) · Zbl 1070.65574 · doi:10.1145/779359.779362
[48] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A.; Meijer, H. G. E.; Sautois, B., New features of the software MATCONT for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14, 2, 147-175 (2008) · Zbl 1158.34302 · doi:10.1080/13873950701742754
[49] Kuznetsov, Y. A., Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations, Int. J. Bifurcation Chaos, 15, 11, 3535-3546 (2005) · Zbl 1096.37026 · doi:10.1142/S0218127405014209
[50] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory (2013), Springer
[51] Schwartz, M.; Hornych, C., Specialisation versus diversification: Perceived benefits of different business incubation models, Int. J. Entrep. Innov. Manage., 15, 3, 177-197 (2012) · doi:10.1504/IJEIM.2012.046599
[52] Leiby, N.
[53] Parker, T. S.; Chua, L., Practical Numerical Algorithms for Chaotic Systems (2012), Springer Science & Business Media
[54] Fredrickson, A. G.; Stephanopoulos, G., Microbial competition, Science, 213, 4511, 972-979 (1981) · Zbl 1225.92054 · doi:10.1126/science.7268409
[55] Elena, S. F., Local adaptation of plant viruses: Lessons from experimental evolution, Mol. Ecol., 26, 7, 1711-1719 (2017) · doi:10.1111/mec.13836
[56] Turner, P. E.; Elena, S. F., Cost of host radiation in an RNA virus, Genetics, 156, 4, 1465-1470 (2000)
[57] Bedhomme, S.; Lafforgue, G.; Elena, S. F., Multihost experimental evolution of a plant RNA virus reveals local adaptation and host-specific mutations, Mol. Biol. Evol., 29, 5, 1481-1492 (2011) · doi:10.1093/molbev/msr314
[58] Deardorff, E. R.; Fitzpatrick, K. A.; Jerzak, G. V. S.; Shi, P.-Y.; Kramer, L. D.; Ebel, G. D., West Nile virus experimental evolution in vivo and the trade-off hypothesis, PLoS Pathog., 7, 11, e1002335 (2011) · doi:10.1371/journal.ppat.1002335
[59] Cooper, L. A.; Scott, T. W., Differential evolution of eastern equine encephalitis virus populations in response to host cell type, Genetics, 157, 4, 1403-1412 (2001)
[60] Nikolin, V. M.; Osterrieder, K.; Von Messling, V.; Hofer, H.; Anderson, D.; Dubovi, E.; Brunner, E.; East, M. L., Antagonistic pleiotropy and fitness trade-offs reveal specialist and generalist traits in strains of canine distemper virus, PLoS One, 7, 12, e50955 (2012) · doi:10.1371/journal.pone.0050955
[61] Schulte, M. B.; Andino, R., Single-cell analysis uncovers extensive biological noise in poliovirus replication, J. Virol., 88, 11, 6205-6212 (2014) · doi:10.1128/JVI.03539-13
[62] Kaern, M.; Elston, T. C.; Blake, W. J.; Collins, J. J., Stochasticity in gene expression: From theories to phenotypes, Nat. Rev. Genet., 6, 451-464 (2005) · doi:10.1038/nrg1615
[63] Zhu, X.-M.; Yin, L.; Ao, P., Robustness, stability and efficiency of phage \(\lambda\) regulatory network: Dynamical structure analysis, J. Bioinf. Comput. Biol., 2, 4, 785-817 (2004) · doi:10.1142/S0219720004000946
[64] Singh, A.; Weinberger, L. S., Noise in viral gene expression as a molecular switch for viral latency, Curr. Opin. Microbiol., 12, 4, 460-466 (2009) · doi:10.1016/j.mib.2009.06.016
[65] Ma, J.; Xu, Y.; Tian, R.; Kurths, J., Predicting noise-induced critical transitions in bistable systems, Chaos, 29, 8, 081102 (2019) · Zbl 1427.37043 · doi:10.1063/1.5115348
[66] Sardanyés, J.; Rodrigues, C.; Januário, C.; Martins, N.; Gil-Gómez, G.; Duarte, J., Activation of effector immune cells promotes tumor stochastic extinction: A homotopy analysis approach, Appl. Math. Comput., 252, 484-495 (2015) · Zbl 1338.92052 · doi:10.1016/j.amc.2014.12.005
[67] Chan, K. S.; Tong, H., A note on noisy chaos, J. R. Stat. Soc. B, 56, 2, 301-311 (1994) · Zbl 0825.93713 · doi:10.2307/2345901
[68] Trickey, S. T.; Virgin, L. N., Bottlenecking phenomenon near a saddle-node remnant in a Duffing oscillator, Phys. Lett. A, 248, 185-190 (1998) · doi:10.1016/S0375-9601(98)00665-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.