×

Mathematical model of Ehrlichia chaffeensis transmission dynamics in dogs. (English) Zbl 1533.92185

Summary: Ehrlichia chaffeensis is a tick-borne disease transmitted by ticks to dogs. Few studies have mathematical modelled such tick-borne disease in dogs, and none have developed models that incorporate different ticks’ developmental stages (discrete variable) as well as the duration of infection (continuous variable). In this study, we develop and analyze a model that considers these two structural variables using integrated semigroups theory. We address the well-posedness of the model and investigate the existence of steady states. The model exhibits a disease-free equilibrium and an endemic equilibrium. We calculate the reproduction number (\(\mathcal{T}_{0}\)). We establish a necessary and sufficient condition for the bifurcation of an endemic equilibrium. Specifically, we demonstrate that a bifurcation, either backward or forward, can occur at \(\mathcal{T}_0=1 \) , leading to the existence, or not, of an endemic equilibrium even when \(\mathcal{T}_{0} < 1\) . Finally, numerical simulations are employed to illustrate these theoretical findings.

MSC:

92D30 Epidemiology
92D25 Population dynamics (general)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
34C23 Bifurcation theory for ordinary differential equations

References:

[1] Barrantes-González, AV, Jiménez-Rocha, AE, Romero-Zuñiga, JJ, et al. Understanding ehrlichia canis infections in dogs of costa rica: hematological findings and indicative clinical signs. Open J Vet Med. 2016;06(11):163-175. doi:
[2] Beall, MJ, Alleman, AR, Breitschwerdt, EB, et al. Seroprevalence of ehrlichia canis, ehrlichia chaffeensis and ehrlichia ewingii in dogs in North America. Parasit Vectors. 2012;5(1):1-11. doi:
[3] Dumler, JS, Barbet, AF, Bekker, C, et al. Reorganization of genera in the families rickettsiaceae and anaplasmataceae in the order rickettsiales: unification of some species of ehrlichia with anaplasma, cowdria with ehrlichia and ehrlichia with neorickettsia, descriptions of six new species combinations and designation of ehrlichia equi and’hge agent’as subjective synonyms of ehrlichia phagocytophila. Int J Syst Evol Microbiol. 2001;51(6):2145-2165. doi:
[4] Nair, AD, Cheng, C, Jaworski, DC, et al. Ehrlichia chaffeensis infection in the reservoir host (white-tailed deer) and in an incidental host (dog) is impacted by its prior growth in macrophage and tick cell environments. PLoS ONE. 2014;9(10):e109056. doi:
[5] Procajło, A, Skupień, E, Bladowski, M, et al. Monocytic ehrlichiosis in dogs. Pol J Vet Sci14(3) (2011), pp. 515-520. doi:
[6] Ehrlichiosis, CM, Fever, CH, Pancytopenia, TC, et al. Ehrlichiosis and anaplasmosis: Zoonotic species. 2013. The Center for Food Security & Public Health, Iowa State University. Accessed on August 7 2022. https://www.cfsph.iastate.edu/Factsheets/pdfs/ehrlichiosis.pdf
[7] Aguiar, DM, Ziliani, TF, Zhang, X, et al. A novel ehrlichia genotype strain distinguished by the trp36 gene naturally infects cattle in brazil and causes clinical manifestations associated with ehrlichiosis. Ticks Tick Borne Dis. 2014;5(5):537-544. doi:
[8] Allsopp, BA. Natural history of ehrlichia ruminantium. Vet Parasitol. 2010;167(2-4):123-135. doi:
[9] Brouqui, P, Matsumoto, K. Bacteriology and phylogeny of anaplasmataceae. Rickettsial Dis. 2007;191-210.
[10] Cohn, LA. Ehrlichiosis and related infections. Vet Clin Small Anim Pract. 2003;33(4):863-884. doi:
[11] Fargnoli, L, Fernandez, C, Monje, LD. Novel ehrlichia strain infecting cattle tick amblyomma neumanni, Argentina, 2018. Emerging Infect Dis. 2020;26(5):1027-1030. doi:
[12] Groves, M, Dennis, G, Amyx, H, et al. Transmission of ehrlichia canis to dogs by ticks (rhipicephalus sanguineus). Am J Vet Res. 1975;36(7):937-940.
[13] Saleh, MN, Allen, KE, Lineberry, MW, et al. Ticks infesting dogs and cats in north america: biology, geographic distribution, and pathogen transmission. Vet Parasitol. 2021;294:109392. doi:
[14] Mahachi, K, Kontowicz, E, Anderson, B, et al. Predominant risk factors for tick-borne co-infections in hunting dogs from the USA. Parasit Vectors. 2020;13(1):1-12. doi:
[15] Vieira, RFDC, Vieira, TSWJ, Nascimento, DDAG, et al. Serological survey of ehrlichia species in dogs, horses and humans: zoonotic scenery in a rural settlement from southern brazil. Rev Inst De Med Trop São Paulo. 2013;55(5):335-340. doi:
[16] Yancey, CB, Hegarty, BC, Qurollo, BA, et al. Regional seroreactivity and vector-borne disease co-exposures in dogs in the united states from 2004-2010: utility of canine surveillance. Vector-Borne Zoonotic Dis. 2014;14(10):724-732. doi:
[17] Paddock, CD, Childs, JE. Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin Microbiol Rev. 2003;16(1):37-64. doi:
[18] Anderson, BE, Sims, KG, Olson, JG, et al. Amblyomma americanum: a potential vector of human ehrlichiosis. Am J Trop Med Hyg. 1993;49(2):239-244. doi:
[19] Anziani, O, Ewing, S, Barker, R. Experimental transmission of a granulocytic form of the tribe ehrlichieae by dermacentor variabilis and amblyomma americanum to dogs. Am J Vet Res. 1990;51(6):929-931.
[20] Centers for Disease Control and Prevention (CDC). How ticks spread disease. [accessed 2023 Aug 7]. Available from: https://www.cdc.gov/ticks/life_cycle_and_hosts.html.
[21] Guo, E, Agusto, FB. Baptism of fire: modeling the effects of prescribed fire on lyme disease. Can J Infect Dis Med Microbiol. 2022;2012.
[22] van der Krogt, J. Ehrlichia canis infections on the island of curaçao an overview of the clinical picture and current diagnostics & therapies. 2010. Accessed August 7 2023. https://studenttheses.uu.nl/bitstream/handle/20.500.12932/4426/Ehrlichia
[23] Ewing, S, Dawson, J, Kocan, A, et al. Experimental transmission of ehrlichia chaffeensis (rickettsiales: ehrlichieae) among white-tailed deer by amblyomma americanum (acari: ixodidae). J Med Entomol. 1995;32(3):368-374. doi:
[24] Little, SE, O’Connor, TP, Hempstead, J, et al. Ehrlichia ewingii infection and exposure rates in dogs from the southcentral united states. Vet Parasitol. 2010;172(3-4):355-360. doi:
[25] Gettings, JR, Self, SC, McMahan, CS, et al. Local and regional temporal trends (2013-2019) of canine ehrlichia spp. seroprevalence in the usa. Parasit Vectors. 2020;13(1):1-11. doi:
[26] Aziz, MU, Hussain, S, Song, B, et al. Ehrlichiosis in dogs: A comprehensive review about the pathogen and its vectors with emphasis on South and East Asian countries. Vet Sci. 2023;10(1):21. doi:
[27] Qurollo, BA, Buch, J, Chandrashekar, R, et al. Clinicopathological findings in 41 dogs (2008-2018) naturally infected with ehrlichia ewingii. J Vet Intern Med. 2019;33(2):618-629. doi:
[28] Qurollo, BA, Chandrashekar, R, Hegarty, BC, et al. A serological survey of tick-borne pathogens in dogs in north america and the Caribbean as assessed by anaplasma phagocytophilum, a. platys, ehrlichia canis, e. chaffeensis, e. ewingii, and borrelia burgdorferi species-specific peptides. Infect Ecol Epidemiol. 2014;4(1):24699.
[29] Gaff, H, Gross, L, Schaefer, E. Results from a mathematical model for human monocytic ehrlichiosis. Clin Microbiol Infect. 2009;15:15-16. doi:
[30] Gaff, HD, Gross, LJ. Modeling tick-borne disease: a metapopulation model. Bull Math Biol. 2007;69(1):265 288 doi: · Zbl 1133.92351
[31] North Shore Animal League. Prevent a litter – spay and neuter your pets. [accessed 2022 Aug 7]. Available from: https://www.animalleague.org/wp-content/uploads/2017/06/dogs-multiply-pyramid.pdf.
[32] Burke, A. How long do dogs live?. [accessed 2022 Aug 7]. Available from: https://www.akc.org/expert-advice/health/how-long-do-dogs-live/.
[33] Mar Vista Animal Medical Center. Ehrlichia infection (canine). 2020 [accessed 2022 Aug 7]. Available from: https://www.marvistavet.com/ehrlichia-infection-canine.pml.
[34] Williams, K. BSc, DVM, CCRP; Ryan Llera, BSc, DVM; Ernest Ward, DVM. Ehrlichiosis in dogs. [accessed 2022 Aug 7]. Available from: https://vcahospitals.com/know-your-pet/ehrlichiosis-in-dogs.
[35] Wheeler, C. The life cycle of a tick. [accessed 2022 Aug 7]. Available from: https://study.com/learn/lesson/tick-life-cycle-reproduction-eggs.html.
[36] Antoinette Ludwig, GH, Ginsberg, HS, Ogden, NH. A dynamic population model to investigate effects of climate and climate-independent factors on the lifecycle of amblyomma americanum. J Med Entomol53(1) (2015), pp. 99-115.
[37] Richard, Q, Choisy, M, Lefèvre, T, et al. Human-vector malaria transmission model structured by age, time since infection and waning immunity. Nonlinear Anal: Real World Appl. 2022;63:103393. doi: · Zbl 1480.92212
[38] Gumel, AB. Causes of backward bifurcations in some epidemiological models. J Math Anal Appl. 2012;395(1):355-365. doi: · Zbl 1251.34065
[39] Agusto, F.B., Easley, S., Freeman, K., et al. Mathematical model of three age-structured transmission dynamics of chikungunya virus. Comput Math Methods Med. 2016;2016:1-31. doi: · Zbl 1348.92140
[40] Blayneh, KW, Gumel, AB, Lenhart, S, et al. Backward bifurcation and optimal control in transmission dynamics of West Nile virus. Bull Math Biol. 2010;72(4):1006-1028. doi: · Zbl 1191.92024
[41] Dushoff, J, Huang, W, Castillo-Chavez, C. Backwards bifurcations and catastrophe in simple models of fatal diseases. J Math Biol. 1998;36(3):227-248. doi: · Zbl 0917.92022
[42] Forouzannia, F, Gumel, A. Dynamics of an age-structured two-strain model for malaria transmission. Appl Math Comput. 2015;250:860-886. · Zbl 1328.92074
[43] Forouzannia, F, Gumel, A. Mathematical analysis of an age-structured model for malaria transmission dynamics. Math Biosci. 2014;247:80-94. doi: · Zbl 1282.92018
[44] Garba, SM, Gumel, AB, Bakar, MA. Backward bifurcations in dengue transmission dynamics. Math Biosci. 2008;215(1):11-25. doi: · Zbl 1156.92036
[45] Mukandavire, Z, Gumel, AB, Garira, W, et al. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences and Engineering6(2) (2009), pp. 333-362. doi: · Zbl 1167.92020
[46] Agusto, FB, Gumel, AB. Theoretical assessment of avian influenza vaccine. DCDS Ser B. 2010;13(1):1-25. doi: · Zbl 1178.92040
[47] Brauer, F. Backward bifurcations in simple vaccination models. J Math Anal Appl. 2004;298(2):418-431. doi: · Zbl 1063.92037
[48] Elbasha, EH, Gumel, AB. Theoretical assessment of public health impact of imperfect prophylactic hiv-1 vaccines with therapeutic benefits. Bull Math Biol. 2006;68(3):577-614. doi: · Zbl 1334.91060
[49] Sharomi, O, Podder, C, Gumel, A, et al. Role of incidence function in vaccine-induced backward bifurcation in some hiv models. Math Biosci. 2007;210(2):436-463. doi: · Zbl 1134.92026
[50] Castillo-Chavez, C, Song, B. Dynamical models of tuberculosis and their applications. Math Biosci Eng. 2004;1(2):361-404. doi: · Zbl 1060.92041
[51] Feng, Z, Castillo-Chavez, C, Capurro, AF. A model for tuberculosis with exogenous reinfection. Theor Popul Biol. 2000;57(3):235-247. doi: · Zbl 0972.92016
[52] Sharomi, O, Podder, C, Gumel, A, et al. Mathematical analysis of the transmission dynamics of hiv/tb coinfection in the presence of treatment. Math Biosci Eng. 2008;5(1):145.174 doi: · Zbl 1140.92016
[53] Garba, SM, Safi, MA, Gumel, AB. Cross-immunity-induced backward bifurcation for a model of transmission dynamics of two strains of influenza. Nonlinear Anal Real World Appl. 2013;14(3):1384-1403. doi: · Zbl 1263.92026
[54] Arendt, W. Resolvent positive operators. Proc Lond Math Soc. 1987;s3-54(2):321-349. doi: · Zbl 0617.47029
[55] Nussbaum, RD. Positive operators and elliptic eigenvalue problems. Math Z. 1984;186(2):247-264. · Zbl 0549.47026
[56] Thieme, HR. Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J Appl Math. 2009;70(1):188-211. doi: · Zbl 1191.47089
[57] Magal, P, Ruan, S. Theory and applications of abstract semilinear Cauchy problems. Volume 201 of Applied Mathematical Sciences. Cham: Springer International Publishing; 2018. · Zbl 1447.34002
[58] Ducrot, A, Liu, Z, Magal, P. Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems. J Math Anal Appl. 2008;341(1):501-518. doi: · Zbl 1142.34036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.