×

Transmission dynamics of a Huanglongbing model with cross protection. (English) Zbl 1444.37078

Summary: Huanglongbing (HLB) is one of the most common widespread vector-borne transmission diseases through psyllid, which is called a kind of cancer of plant disease. In recent years, biologists have focused on the role of cross protection strategy to control the spread of HLB. In this paper, according to transmission mechanism of HLB, a deterministic model with cross protection is formulated. A threshold value \(R_{0}\) is established to measure whether or not the disease is uniformly persistent. The existence of a backward bifurcation presents a further sub-threshold condition below \(R_{0}\) for the spread of the disease. We also discuss the effects of cross protection and removing infected trees in spreading the disease. Numerical simulations suggest that cross protection is a promotion control measure, and replanting trees is bad for HLB control.

MSC:

37N25 Dynamical systems in biology
92D30 Epidemiology
92C60 Medical epidemiology

References:

[1] Bové, JM: Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88, 7-37 (2006)
[2] Taylor, RA, Mordecai, EA, Gilligan, CA, Rohr, JR, Johnson, LR: Mathematical models are a powerful method to understand and control the spread of Huanglongbing. PeerJ 19, 2642 (2016) · doi:10.7717/peerj.2642
[3] Jacobsen, K, Stupiansky, J, Pilyugin, SS: Mathematical modeling of citrus groves infected by Huanglongbing. Math. Biosci. Eng. 10, 705-728 (2013) · Zbl 1269.92067 · doi:10.3934/mbe.2013.10.705
[4] Zhang, M, Guo, Y, Powell, CA, Doud, MS, Yang, C, Duan, Y: Effective antibiotics against “Candidatus Liberibacter asiaticus” in HLB-affected citrus plants identified via the graft-based evaluation. PLoS ONE 9(11), 1-11 (2014)
[5] Hoffman, MT, Doud, MS, Williams, L, Zhang, M, Ding, F, Stover, E, Hall, D, Zhang, S, Jones, L, Gooch, M, Fleites, L, Dixon, W, Gabriel, D, Duan, Y: Heat treatment eliminates ‘Candidatus Liberibacter asiaticus’ from infected citrus trees under controlled conditions. Phytopathology 103, 15-22 (2013) · doi:10.1094/PHYTO-06-12-0138-R
[6] Dutt, M, Barthe, G, Irey, M, Grosser, J: Correction: Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; Citrus Greening). PLoS ONE 11(1), 1-17 (2016) · doi:10.1371/journal.pone.0147657
[7] Gottwald, TR, Graham, JH, Irey, MS, McCollum, TG, Wood, BW: Inconsequential effect of nutritional treatments on huanglongbing control, fruit quality, bacterial titer and disease progress. Crop Prot. 36, 73-82 (2012) · doi:10.1016/j.cropro.2012.01.004
[8] Gottwald, TR, Hall, DG, Kriss, AB, Salinas, EJ, Parker, PE, Beattie, GAC, Nguyen, MC: Orchard and nursery dynamics of the effect of interplanting citrus with guava for huanglongbing, vector, and disease management. Crop Prot. 64, 93-103 (2014) · doi:10.1016/j.cropro.2014.06.009
[9] McKinney, HH: Mosaic diseases in the Canary Islands, West Africa and Gibraltar. J. Agric. Res. 39, 557-578 (1929)
[10] Zhang, XS, Holt, J: Mathematical models of cross protection in the epidemiology of plant-virus diseases. Phytopathology 91, 924-934 (2001) · doi:10.1094/PHYTO.2001.91.10.924
[11] Rochow, WF, Muller, I, Gildow, FE: Interference between two luteoviruses in an aphid: lack of reciprocal competition. Phytopathology 73, 919-922 (1983) · doi:10.1094/Phyto-73-919
[12] Cui, B, Cui, S, Wang, H, Weng, F, Gong, J: Study of cross protection of citrus tristeza viruse disease on Bendizao mandarin (Citrus succosa). Agric. Life Sci. 31, 433-438 (2005)
[13] Vuuren, SP; Vyver, JB; Lutting, M.; Graca, JV, Low incidence of Huanglong-bing fruit symptoms in Valencia sweet orange trees in the presence of a population of Citrus tristeza virus, 373-377 (2000), Valencia
[14] Hartung, JS, Folimonov, AS, Folimonov, SY, Dawson, WO: H-16 screening of antibacterial peptides in citrus trees for activity against Candidatus Liberibacter asiaticus. In: Second International Citrus Canker and Huanglongbing Research Workshop 64
[15] Meng, X, Li, Z: The dynamics of plant disease models with continuous and impulsive cultural control strategies. J. Theor. Biol. 266, 29-40 (2010) · Zbl 1407.92077 · doi:10.1016/j.jtbi.2010.05.033
[16] Meng, X, Song, Z, Chen, L: A new mathematical model for optimal control strategies of integrated pest management. J. Biol. Syst. 15, 219-234 (2007) · Zbl 1279.92053 · doi:10.1142/S0218339007002143
[17] Zhang, T, Meng, X, Song, Y, Li, Z: Dynamical analysis of delayed plant disease models with continuous or impulsive cultural control strategies. Abstr. Appl. Anal. 2012, 1-25 (2012) · Zbl 1237.93134
[18] Zhao, W, Li, J, Zhang, T, Meng, X, Zhang, T: Persistence and ergodicity of plant disease model with Markov conversion and impulsive toxicant input. Commun. Nonlinear Sci. Numer. Simul. 48, 70-84 (2017) · Zbl 1510.92257 · doi:10.1016/j.cnsns.2016.12.020
[19] Xia, L, Gao, S, Zou, Q, Wang, J: Analysis of a nonautonomous plant disease model with latent period. Appl. Math. Comput. 223, 147-159 (2013) · Zbl 1329.92080
[20] Gao, S, Xia, L, Wang, J, Zhang, Z: Modelling the effects of cross protection control in plant disease with seasonality. Int. J. Biomath. 10, 1-24 (2017) · Zbl 1371.34067 · doi:10.1142/S1793524517500887
[21] Zhang, XS, Holt, J, Colvin, J: Mathematical models of host plant infection by helper-dependent virus complexes: why are helper viruses always avirulent. Phytopathology 90, 85-93 (2000) · doi:10.1094/PHYTO.2000.90.1.85
[22] Garba, SM, Gumel, AB, Abu Bakar, NR: Backward bifurcations in dengue transmission dynamics. Math. Biosci. 215, 11-25 (2008) · Zbl 1156.92036 · doi:10.1016/j.mbs.2008.05.002
[23] Abdelrazec, A, Bélair, J, Shan, C, Zhu, H: Modelling the spread and control of dengue with limited public health resources. Math. Biosci. 271, 136-145 (2016) · Zbl 1364.92036 · doi:10.1016/j.mbs.2015.11.004
[24] Li, X, Li, W, Ghosh, M: Stability and bifurcation of an SIR epidemic model with nonlinear incidence and treatment. Appl. Math. Comput. 210, 141-150 (2009) · Zbl 1159.92036 · doi:10.1016/j.amc.2008.12.085
[25] Abdelrazec, A, Lenhart, S, Zhu, H: Transmission dynamics of West Nile virus in mosquitoes and corvids and non-corvids. J. Math. Biol. 68, 1553-1582 (2014) · Zbl 1284.92049 · doi:10.1007/s00285-013-0677-3
[26] Hu, Z, Chang, L, Teng, Z, Chen, X: Bifurcation analysis of a discrete SIRS epidemic model with standard incidence rate. Adv. Differ. Equ. 2016, 155 (2016) · Zbl 1419.37081 · doi:10.1186/s13662-016-0874-7
[27] Zhang, T, Kang, R, Wang, K, Liu, J: Global dynamics of an SEIR epidemic model with discontinuous treatment. Adv. Differ. Equ. 2015, 361 (2015). doi:10.1186/s13662-015-0695-0 · Zbl 1422.92179 · doi:10.1186/s13662-015-0695-0
[28] Diekmann, O, Heesterbeek, JAP: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Math. Comp. Biol. Wiley, New York (2000) · Zbl 0997.92505
[29] van den Driessche, P, Watmough, J: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[30] Blayneh, KW, Gumel, AB, Lenhart, S, Clayton, T: Backward bifurcation and optimal control in transmission dynamics of West Nile virus. Bull. Math. Biol. 72, 1006-1028 (2010) · Zbl 1191.92024 · doi:10.1007/s11538-009-9480-0
[31] Wan, H, Zhu, H: The backward bifurcation in compartmental models for West Nile virus. Math. Biosci. 227, 20-28 (2010) · Zbl 1194.92067 · doi:10.1016/j.mbs.2010.05.006
[32] Castillo-Chavez, C, Song, B: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1, 361-404 (2004) · Zbl 1060.92041 · doi:10.3934/mbe.2004.1.361
[33] Zhao, XQ: Dynamical System in Population Biology. Springer, New York (2003) · Zbl 1023.37047 · doi:10.1007/978-0-387-21761-1
[34] Zhang, F, Zhao, XQ: A periodic epidemic model in a patchy environment. J. Math. Anal. Appl. 325, 496-516 (2007) · Zbl 1101.92046 · doi:10.1016/j.jmaa.2006.01.085
[35] Deng, XM: Forming process and basis and technological points of the theory emphasis on control citrus psylla for integrated control Huanglongbing. Chin. Agric. Sci. Bull. 25, 358-363 (2009) (in Chinese)
[36] Taylor, RA, Mordecai, E, Gilligan, CA, Rohr, JR, Johnson, LR: Mathematical models are a powerful method to understand and control the spread of Huanglongbing. PeerJ 4, e2642 (2016). doi:10.7717/peerj.2642 · doi:10.7717/peerj.2642
[37] Liu, YH, Tsai, JH: Effects of temperature on biology and life table parameters of the Asian citrus psyllid, Diaphorina citri kuwayama (Homoptera: Psyllidae). Ann. Appl. Biol. 137, 201-206 (2000) · doi:10.1111/j.1744-7348.2000.tb00060.x
[38] Hall, DG, Wenninger, EJ, Hentz, MG: Temperature studies with the Asian citrus psyllid, Diaphorina citri: cold hardiness and temperature thresholds for oviposition. J. Insect Sci. 11, 83 (2011) · doi:10.1673/031.011.8301
[39] Xia, L, Gao, S, Liu, Y, Xie, D: A plant virus disease model with periodic environment and pulse roguing. Stud. Appl. Math. 136, 357-381 (2016). doi:10.1111/sapm.12109 · Zbl 1341.92072 · doi:10.1111/sapm.12109
[40] Chan, MS, Jeger, MJ: An analytical model of plant virus disease dynamics with roguing and replanting. J. Appl. Ecol. 31, 413-427 (1994) · doi:10.2307/2404439
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.