×

Transmission dynamics of West Nile virus in mosquitoes and corvids and non-corvids. (English) Zbl 1284.92049

Summary: There are more than 300 avian species that can transmit the West Nile virus (WNv). In general, the corvid and non-corvid families of birds have different responses to the virus, with corvids suffering a higher disease-induced mortality rate. By taking both corvids and non-corvids as the primary reservoir hosts and mosquitoes as vectors; we formulate and study a system of ordinary differential equations to model a single season of the transmission dynamics of WNv in the mosquito-bird cycle. We calculate the basic reproduction number and analyze the existence and stability of the equilibria. The existence of a backward bifurcation gives a further sub-threshold condition beyond the basic reproduction number for the spread of the virus. We also discuss the role of corvids and non-corvids in spreading the virus. We conclude that knowledge of the relative abundance of corvid bird species and other mammals assist us in accurate estimation of the epidemic of WNv.

MSC:

92C60 Medical epidemiology
34C60 Qualitative investigation and simulation of ordinary differential equation models
92-08 Computational methods for problems pertaining to biology
92D30 Epidemiology
Full Text: DOI

References:

[1] Blayneh K, Gumel A, Lenhart S, Clayton T (2010) Backward bifurcation and optimal control in transmission dynamics of West Nile virus. Bull Math Biol 72:1006-1028 · Zbl 1191.92024 · doi:10.1007/s11538-009-9480-0
[2] Bowman C, Gumel AB, Wu J, van den Driessche P, Zhu H (2005) A mathematical model for assessing control strategies against West Nile virus. Bull Math Biol 67(5):1107-1133 · Zbl 1334.92392 · doi:10.1016/j.bulm.2005.01.002
[3] Buck, P.; Liu, R.; Shuai, J.; Wu, J.; Zhu, H.; Ma, Z. (ed.); Wu, J. (ed.); Zhou, Y. (ed.), Modeling and simulation studies of West Nile Virus in Southern Ontario Canada (2009), London
[4] Castillo-Chavez C, Song B (2004) Dynamical models of tuberculosis and their applications. Math Biosci Eng 1(2):361-404 · Zbl 1060.92041 · doi:10.3934/mbe.2004.1.361
[5] Carr J (1981) Applications of centre manifold theory. Springer, Berlin · Zbl 0464.58001 · doi:10.1007/978-1-4612-5929-9
[6] Center for Disease Control and Prevention (CDC) (1999) Update: West Nile-like viral encephalitis—New York. Morb. Mortal Wkly. Rep. 48:890-892
[7] Center for Disease Control and Prevention (CDC) (2001) Weekly update: West Nile virus activity—United States. Morb. Mortal Wkly. Rep. 50:1061-1063 · Zbl 1080.92057
[8] Cruz-Pacheco G, Esteva L, Montano-Hirose J, Vargas D (2005) Modelling the dynamics of West Nile virus. Bull Math Biol 67:1157-1172 · Zbl 1334.92397 · doi:10.1016/j.bulm.2004.11.008
[9] Gourley A, Liu R, Wu J (2007) Some vector borne diseases with structured host populations: extinction and spatial spread. J Appl Math 67:408-433 · Zbl 1123.35083
[10] Gubler J (1989) The arboviruses: epidemiology and ecology. II. CRC Press, Florida
[11] Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, Berlin · Zbl 0515.34001 · doi:10.1007/978-1-4612-1140-2
[12] Hamer L, Kitron D, Goldberg L, Brawn D, Loss R, Ruiz O, Hayes B, Walker D (2009) Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am J Trop Med Hyg 80(2):268-278
[13] Jang S (2007) On a discrete West Nile epidemic model. J Comput Appl Math 26(3):397-414
[14] Jiang J, Qiu Z, Wu J, Zhu H (2009) Threshold conditions for West Nile virus outbreaks. Bull Math Biol 71(3):627-647 · Zbl 1163.92036 · doi:10.1007/s11538-008-9374-6
[15] Kenkre M, Parmenter R, Peixoto D, Sadasiv L (2005) A theoretic framework for the analysis of the West Nile virus epidemic. Math Comput Model 42:313-324 · Zbl 1080.92057 · doi:10.1016/j.mcm.2004.08.012
[16] Komar N, Langevin S, Hinten S, Nemeth N, Edwards E (2003) Experimental infection of North American birds with the New York 1999 strain of West Nile Virus. Emerg Infect Dis 9(3):311-322 · doi:10.3201/eid0903.020628
[17] Kurt D, Reed MD, Jennifer K, James S, Henkel S, Sanjay K (2003) Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens. Clin Med Res 1(1):5-12 · doi:10.3121/cmr.1.1.5
[18] Lewis M, Renclawowicz J, van den Driessche P (2006a) Traveling waves and spread rates for a West Nile virus model. Bull Math Biol 68(1):3-23 · Zbl 1334.92414 · doi:10.1007/s11538-005-9018-z
[19] Lewis M, Renclawowicz J, van den Driesssche P, Wonham M (2006b) A comparison of continuous and discrete-time West Nile virus models. Bull Math Biol 68(3):491-509 · Zbl 1334.92413 · doi:10.1007/s11538-005-9039-7
[20] Patrick Z (2005) West Nile virus national report on dead bird surveillance. Canadian Cooperative Wildlife Health Centre, Saskatoon
[21] Peterson R, Marfin A (2002) West Nile virus: a primer for the clinician. Ann Intern Med 137(3):173-179 · doi:10.7326/0003-4819-137-3-200208060-00009
[22] Public Health Agency of Canada, West Nile virus MONITOR: maps & Stats, http://www.phac-aspc.gc.ca/wnv-vwn/. Accessed 5 Oct 2012
[23] Russell R, Dwyer D (2000) Arboviruses associated with human disease in Australia. Microbes Infect 2(1):693-704 · doi:10.1016/S1286-4579(00)00286-0
[24] Smithburn C, Hughes P, Burke W, Paul H (1940) A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med Hyg 20:471-492
[25] Swayne D, Beck R, Zaki S (2000) Pathogenicity of West Nile virus for Turkeys. Avian Dis 44:932-937 · doi:10.2307/1593067
[26] Thomas M, Urena B (2001) A mathematical model describing the evolution of West Nile-like encephalitis in New York City. Math Comput Model 34(7):771-781 · Zbl 0999.92025 · doi:10.1016/S0895-7177(01)00098-X
[27] van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29-48 · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[28] Wan H, Zhu H (2010) The backward bifurcation in compartmental models for West Nile virus. Math Biosci 227(1):20-28 · Zbl 1194.92067 · doi:10.1016/j.mbs.2010.05.006
[29] Wonham M, de-Camino-Beck T, Lewis M (2004) An epidemiological model for West Nile virus: invasion analysis and control applications. Proc R Soc 271:501-507 · doi:10.1098/rspb.2003.2608
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.