×

Applications of the quadratic covariation differentiation theory: variants of the Clark-Ocone and Stroock’s formulas. (English) Zbl 1246.60080

In a 2006 article [Stochastic Anal. Appl. 24, No. 2, 367–380 (2006; Zbl 1100.60027)], H. Allouba presented his quadratic covariation differentiation theory for Itô’s integral calculus. In it, he defined the derivative of a semimartingale with respect to a Brownian motion as the time derivative of their quadratic covariation and a generalization thereof. He then obtained a systematic pathwise stochastic differentiation theory that comes complete with a fundamental theorem of stochastic calculus relating this derivative to Itô’s integral, a differential stochastic chain rule, a differential stochastic mean value theorem, and other differentiation rules. In this current article, the authors use Allouba’s differentiation theory to obtain variants of the Clark-Ocone and Stroock representation formulas, with and without change of measure. They prove their variants of the Clark-Ocone formula under \(L^2\)-type conditions on the random variable but with no \(L^p\) conditions on the derivative. Iterating the variants of the Clark-Ocone formula, the authors obtain variants of Stroock’s formula.

MSC:

60H05 Stochastic integrals
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H99 Stochastic analysis
60G20 Generalized stochastic processes
60G05 Foundations of stochastic processes

Citations:

Zbl 1100.60027

References:

[1] DOI: 10.1080/07362990500522411 · Zbl 1100.60027 · doi:10.1080/07362990500522411
[2] Allouba , H. 2011 . A universalp-covariation calculus. Preprint (In prep.).
[3] DOI: 10.1214/aop/1015345772 · Zbl 1018.60066 · doi:10.1214/aop/1015345772
[4] DOI: 10.1090/S0002-9947-02-03074-X · Zbl 1006.60063 · doi:10.1090/S0002-9947-02-03074-X
[5] Bhattacharya R., Stochastic Processes with Applications (1990) · Zbl 0744.60032
[6] Clark , J. M. C. 1970 . The representation of functionals of Brownian motion as stochastic integrals.Ann. Math. Statist.41:MR0270448. [Correction to the paper,Ann. Math. Statist.42 (1971) 1778]. · Zbl 0231.60044 · doi:10.1214/aoms/1177693186
[7] Doleans-Dade C., Publ. Inst. Stat. Univ. Paris 16 pp 23– (1967)
[8] Durrett R., Stochastic Calculus: A Practical Introduction (1996)
[9] DOI: 10.1080/10451120212869 · Zbl 1009.60045 · doi:10.1080/10451120212869
[10] Di Nunno , G. Øksendal , B. , and Proske , F. 2009 .Malliavin Calculus for Lévy Processes with Applications to Finance.Universitext. Springer-Verlag, Berlin.
[11] Fontes , R. 2010 . Applications of Allouba’s differentiation theory and semi-SPDEs. Ph.D. Dissertation, Kent State University.
[12] DOI: 10.1007/BF01198428 · Zbl 0688.60028 · doi:10.1007/BF01198428
[13] DOI: 10.3792/pia/1195572786 · Zbl 0060.29105 · doi:10.3792/pia/1195572786
[14] DOI: 10.2969/jmsj/00310157 · Zbl 0044.12202 · doi:10.2969/jmsj/00310157
[15] Jacod J., Calcul Stochastique et Problémes de Martingales. Lecture Notes in Math. 714 (1979) · Zbl 0414.60053 · doi:10.1007/BFb0064907
[16] DOI: 10.1080/17442509108833731 · Zbl 0745.60056 · doi:10.1080/17442509108833731
[17] Karatzas , I. , and Shreve , S. E. 1991 .Brownian Motion and Stochastic Calculus, 2nd ed.Graduate Texts in Mathematics, 113.Springer-Verlag, New York. · Zbl 0734.60060
[18] Malliavin , P. 1978 .Stochastic Calculus of Variation and Hypoelliptic Operators. Proceedings of the International Symposium on Stochastic Differential Equations(Res. Inst. Math. Sci., Kyoto Univ., Kyoto, 1976), pp. 195–263, Wiley, New York.
[19] DOI: 10.1080/17442508408833299 · Zbl 0542.60055 · doi:10.1080/17442508408833299
[20] DOI: 10.1080/17442509108833682 · Zbl 0727.60070 · doi:10.1080/17442509108833682
[21] Øksendal , B. 2003 .Stochastic Differential Equations. An Introduction with Applications, 6th ed. Universitext. Springer-Verlag, Berlin. · Zbl 1025.60026
[22] Royden H., Real Analysis,, 3. ed. (1988) · Zbl 0704.26006
[23] Shreve , S. E. 2004 .Stochastic Calculus for Finance. II. Continuous-Time Models.Springer Finance, New York. · Zbl 1068.91041 · doi:10.1007/978-1-4757-4296-1
[24] Stroock D. W., Homogeneous Chaos Revisited. Séminaire de Probabilités, XXI, 1–7, Lecture Notes in Math., 1247 (1987)
[25] van Neerven J., On the Stochastic Fubini Theorem in Infinite Dimensions. Stochastic Partial Differential Equations and Applications|VII, 323–336, Lect. Notes Pure Appl. Math., 245 (2006) · Zbl 1113.60056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.