×

Noncommutative integrability from classical to quantum mechanics. (English) Zbl 1278.81106

Summary: We propose in this work a definition of integrable quantum system, which is based upon the correspondence with the concept of noncommutative integrability for classical mechanical systems. We then determine sufficient conditions under which, given an integrable classical system, it is possible to construct an integrable quantum system by means of a quantization procedure based on the symmetrized product of operators. As a first example of application of such an approach, we will consider the possible cases of noncommutative integrability for systems with rotational symmetry in an \(n\)-dimensional Euclidean configuration space.

MSC:

81R12 Groups and algebras in quantum theory and relations with integrable systems
70H06 Completely integrable systems and methods of integration for problems in Hamiltonian and Lagrangian mechanics
81S05 Commutation relations and statistics as related to quantum mechanics (general)
20G45 Applications of linear algebraic groups to the sciences
Full Text: DOI

References:

[1] Nekhoroshev, N.N.: Action-angle variables and their generalizations. Trans. Mosc. Math. Soc. 26, 180–198 (1972) · Zbl 0284.58009
[2] Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978) · Zbl 0386.70001
[3] Mishenko, A.S., Fomenko, A.T.: A generalized Liouville method for the integration of Hamiltonian systems. Funct. Anal. Appl. 12(2), 45–56 (1978)
[4] Fomenko, A.T.: Differential Geometry and Topology. Consultants Bureau, New York (1987)
[5] Fassò, F.: Superintegrable Hamiltonian systems: geometry and perturbations. Acta Appl. Math. 87, 93–121 (2005) · Zbl 1073.37069 · doi:10.1007/s10440-005-1139-8
[6] Berezin, F.A.: General concept of quantization. Commun. Math. Phys. 40, 153–174 (1975) · Zbl 1272.53082 · doi:10.1007/BF01609397
[7] Cirelli, R., Manià, A., Pizzocchero, L.: Quantum mechanics as an infinite dimensional Hamiltonian system with uncertainty structure, Parts I and II. J. Math. Phys. 31, 2891–2897 (1990). 2898–2903 · Zbl 0850.70206 · doi:10.1063/1.528941
[8] Cirelli, R., Pizzocchero, L.: On the integrability of quantum mechanics as an infinite-dimensional Hamiltonian system. Nonlinearity 3, 1057–1080 (1990) · Zbl 0718.58028 · doi:10.1088/0951-7715/3/4/006
[9] Cirelli, R., Gatti, M., Manià, A.: The pure state space of quantum mechanics as hermitian symmetric space. J. Geom. Phys. 45, 267–284 (2003) · Zbl 1032.81021 · doi:10.1016/S0393-0440(01)00031-6
[10] Semenov-Tian-Shansky, M.A.: Quantum and classical integrable systems. In: Integrability of Nonlinear Systems. Lecture Notes in Phys., vol. 495, pp. 314–377. Springer, Berlin (1997) · Zbl 1078.37513
[11] Enciso, A., Peralta-Salas, D.: Classical and quantum integrability of Hamiltonians without scattering states. Theor. Math. Phys. 148, 1086–1099 (2006) · Zbl 1177.81058 · doi:10.1007/s11232-006-0103-8
[12] Hietarinta, J.: Classical versus quantum integrability. J. Math. Phys. 25, 1833–1840 (1984) · doi:10.1063/1.526373
[13] Clemente-Gallardo, J., Marmo, G.: Towards a definition of quantum integrability. arXiv:0808.3819 (2008) · Zbl 1158.81337
[14] Weigert, S.: The problem of quantum integrability. Physica D 56, 107–119 (1992) · doi:10.1016/0167-2789(92)90053-P
[15] Burchnall, J.L., Chaudy, T.W.: Commutative ordinary differential operators. Proc. R. Soc. Lond. 118, 557–583 (1928). 134, 471–485, 1932 · JFM 54.0439.01 · doi:10.1098/rspa.1928.0069
[16] Chalych, O.A., Veselov, A.P.: Commutative rings of partial differential operators and Lie algebras. Commun. Math. Phys. 126, 597–611 (1990) · Zbl 0746.47025 · doi:10.1007/BF02125702
[17] Hietarinta, J.: Pure quantum integrability. Phys. Lett. A 246, 97–104 (1998) · Zbl 0941.81049 · doi:10.1016/S0375-9601(98)00535-0
[18] Gravel, S., Winternitz, P.: Superintegrability with third-order integrals in quantum and classical mechanics. J. Math. Phys. 43, 5902–5912 (2002) · Zbl 1060.81034 · doi:10.1063/1.1514385
[19] Marino, M., Nekhoroshev, N.N.: Quantization of classical integrable systems. Part I: quasi-integrable quantum systems (2010). arXiv:1001.4685 [math-ph]
[20] Marino, M., Nekhoroshev, N.N.: Quantization of classical integrable systems. Part II: Quantization of functions on Poisson manifolds (2010). arXiv:1001.4701 [math-ph]
[21] Marino, M., Nekhoroshev, N.N.: Quantization of classical integrable systems. Part III: Systems in n-dimensional Euclidean space (2010). arXiv:1001.4885 [math-ph]
[22] Marino, M., Nekhoroshev, N.N.: Quantization of classical integrable systems. Part IV: Systems of resonant oscillators (2010). arXiv:1001.4909 [math-ph]
[23] Berezin, F.A.: Some remarks about the associate envelope of a Lie algebra. In: Funktzionalnyi Analiz i Ego Prilozheniya 1, vol. 2, pp. 1–14 (1967). English translation: Funct. Anal. and Its Appl., 1, pp. 91–102 (1967)
[24] Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Philol. Soc. 45, 99–124 (1949) · Zbl 0031.33601 · doi:10.1017/S0305004100000487
[25] Olshanetsky, A.M., Perelomov, M.A.: Classical integrable finite-dimensional systems related to Lie algebras. Phys. Rep. 71(5), 314–400 (1981) · doi:10.1016/0370-1573(81)90023-5
[26] Olshanetsky, A.M., Perelomov, M.A.: Quantum integrable systems related to Lie algebras. Phys. Rep. 94(6), 313–404 (1983) · doi:10.1016/0370-1573(83)90018-2
[27] Evans, N.W.: Superintegrability in classical mechanics. Phys. Rev. A 41, 5666–5676 (1990) · doi:10.1103/PhysRevA.41.5666
[28] Etingof, P.I.: Quantum integrable systems and representations of Lie algebras. J. Math. Phys. 36(6), 2636–2651 (1995) · Zbl 0861.17002 · doi:10.1063/1.531056
[29] Tempesta, P., Turbiner, A.V., Winternitz, P.: Exact solvability of superintegrable systems. J. Math. Phys. 42, 4248–4257 (2001) · Zbl 1011.81019 · doi:10.1063/1.1386927
[30] Marquette, I., Winternitz, P.: Polynomial Poisson algebras for classical superintegrable systems with a third-order integral of motion. J. Math. Phys. 48, 012902 (2007) · Zbl 1121.37043 · doi:10.1063/1.2399359
[31] Rodriguez, M.A., Winternitz, P.: Quantum superintegrability and exact solvability in n dimensions. J. Math. Phys. 43, 1309–1322 (2002) · Zbl 1059.81081 · doi:10.1063/1.1435077
[32] Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon, London (1960)
[33] Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon, London (1960)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.