×

Dirac’s observables for the rest-frame instant form of tetrad gravity in a completely fixed 3-orthogonal gauge. (English) Zbl 1005.83002

In a previous paper by one of the authors (L. L.), the definition of the rest-frame instant form of metric gravity was given. In particular, therein it was shown that this form can only be reached when the requirement of the existence of a well-defined and unique asymptotic Poincaré group is imposed. By selecting the class of Christodoulou-Klainermann space-times, where there exist three first-class constraints defining the rest frame, a consistent rest-frame instant form of metric gravity was given. As a consequence, the author could partly transfer methods from parametrized quantum field theory in flat space-time to curved space-time. In particular, this led to the existence of an ultraviolet cut-off in Einstein’s general relativity theory (which is not power counting renormalizable) in such space-times.
In the present review paper the authors show that restricting oneself to Christodoulou-Klainermann space-times, in a similar way one can establish the rest-frame instant form of tetrad gravity. Then, the gauge transformations generated by the 14 first-class constraints of the theory are studied and, afterwards, the rotation and space diffeomorphism constraints are analyzed. As a result, it is seen how the cotriads and their momenta depend on the corresponding gauge variables. This allows the authors to find a point canonical transformation to the class of 3-orthogonal gauges and to construct the superspace Dirac observables in these gauges. It is shown that the explicit construction of this transformation and of the solution of the rotation and supermomentum constraints is reduced to the task to solve a system of elliptic linear and quasi-linear partial differential equations, whose solution would give the expressions of the cotriad momenta in terms of the gauge variables and the Dirac observables in these gauges. The authors then demonstrate that, after a canonical transformation of the previous canonical basis of the Dirac observables, the superhamiltonian constraint takes the form of Lichnerowicz equation for the conformal factor of the 3-metric. The momentum canonically conjugate to this factor is determined. The paper is completed by two appendices (on 3-tensors in the special 3-orthogonal gauge and on the strong and weak ADM Poincaré charges in this gauge) and 130 references.

MSC:

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83C45 Quantization of the gravitational field
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] Lusanna, L., and Russo, S. (2002). ”A New Parametrization for Tetrad Gravity” (GR-QC/ 0 · Zbl 1004.83041
[2] Lusanna, L., and Russo, S., ”Tetrad Gravity: I) A New Formulation,” Firenze Univ. preprint (GR-QC/9807072). · Zbl 1004.83041
[3] Lusanna, L., and Russo, S., ”Tetrad Gravity: II) Dirac’s Observables,” Firenze Univ. preprint (GR-QC/9807073).
[4] De Pietri, R., and Lusanna, L., ”Tetrad Gravity III: Asymptotic Poincar’e Charges, the Physical Hamiltonian and Void Spacetimes,” Firenze Univ. preprint (GR-QC/9909025).
[5] Arnowitt, R., Deser, S., and Misner, · Zbl 0091.21203 · doi:10.1103/PhysRev.117.1595
[6] Lusanna, L. (2001). ”The Rest-Frame Instant Form of Metric Gra · Zbl 1039.83004 · doi:10.1023/A:1012297028267
[7] Dirac, P. A.
[8] Anderson, J. L., and Bergmann, · Zbl 0045.45505 · doi:10.1103/PhysRev.83.1018
[9] Lusanna · doi:10.1016/0370-1573(90)90107-D
[10] Lusanna, L., ”Towards a Unified Description of the Four Interactions inTerms of Dirac-Bergmann Observables,” invited contribution to the book ”Quantum Field Theory: a 20th Century Profile,” of the Indian National Science Academy, ed. A. N. Mitra, foreward F. J. Dyson (Hindustan Book Agency, New Delhi) (HEP-TH/9907081). ”Tetrad Gravity and Dirac’s Observables,” talk given at the Conf. ”Constraint Dynamics and Quantum Gravity 99,”Villasimius 1999, eds.V. DeAlfaro, J. E. Nelson, M. Cadoni, M. Cavaglia’ and A. T. Filippov, (2000). Nucl. Phys. B (Proc. Suppl.) 88, 301 (GR-QC/9912091). ”The Rest-Frame Instant Form of Dynamics and Dirac’s Observables,” talk given at the Int. Workshop ”Physical Variables in Gauge Theories,” Dubna 1999. ”Solving Gauss’ Laws and Searching Dirac Observables for the Four Interactions,” talk at the ”Second Conf. on Constrained Dynamics and Quantum Gravity,” S. Margherita Ligure 1996, eds. V. De Alfaro, J. E. Nelson, G. Bandelloni, A. Blasi, M. Cavagli‘a and A. T. Filippov, (1997). Nucl. Phys. B (Proc.Suppl.) 57, 13 (HEP-TH/9702114). ”Unified Description and Canonical Reduction to Dirac’s Observables of the Four Interactions,” talk at the Int. Workshop ”New non Perturbative Methods and Quantization on the Light Cone’, Les Houches School 1997, eds. P. Grang’e, H. C. Pauli, A. Neveu, S. Pinsky and A. Werner (Springer, Berlin, 1998) (HEP-TH/9705154). ”The Pseudoclassical Relativistic Quark Model in the Rest-Frame Wigner-Covariant Gauge,” talk at the Euroconference QCD97, ed. S. Narison, Montpellier 1997, (1998) Nucl. Phys. B (Proc. Suppl.) 64, 306.
[11] Shanmugadhasan, S · Zbl 0282.70012 · doi:10.1063/1.1666377
[12] Chaichian, M., Louis Martinez, D., and Lusanna, L. (1994). Ann. Phys. (N.Y.) 232, 40. · Zbl 0805.35103 · doi:10.1006/aphy.1994.1049
[13] Kuchar, K · doi:10.1063/1.522976
[14] Dirac, P. A. M. · Zbl 0035.26803 · doi:10.1103/RevModPhys.21.392
[15] Lusanna, L. (199 · Zbl 0985.81790 · doi:10.1142/S0217751X9700058X
[16] Crater, H., and Lusanna, L. (2001). Ann. Phys. (NY) 289, 87 (HEP-TH/0001046). Alba, D., Crater, H., and Lusanna, L. (200 · Zbl 0999.78005 · doi:10.1006/aphy.2000.6129
[17] Lusanna, L. (199
[18] Møller, C. (1949).
[19] Christodoulou, D., and Klainerman, S. (1993) ”The Global Nonlinear Stability of the Minkowski Space” (Princeton University Press, Princeton). · Zbl 0827.53055
[20] Nakahara, M. (1990). ”Geometry, Topology and Physics” (IOP, Bristol). · Zbl 0764.53001
[21] O’Neil, B. (1983). ”Semi-Riemannian Geometry” (Academic Press, New York).
[22] Bleecker, D. (1981). ”Gauge Theory and Variational Principles” (Addison-Wesley, London). · Zbl 0481.58002
[23] Schwinge · Zbl 0111.42401 · doi:10.1103/PhysRev.130.1253
[24] Longhi, G., and Lusanna, · doi:10.1103/PhysRevD.34.3707
[25] Dirac, P. A. M. · Zbl 0042.21202 · doi:10.4153/CJM-1951-001-2
[26] Regge, T., and Teitelboim, C. ( · Zbl 0328.70016 · doi:10.1016/0003-4916(74)90404-7
[27] Alba, D., Lusanna, L., and Pauri, M · Zbl 1059.70014 · doi:10.1063/1.1435424
[28] Lusanna, L., and Materassi, M. (199
[29] Hanson, A. J., and Regge, T. ( · doi:10.1016/0003-4916(74)90046-3
[30] Longhi, G., and Materassi, M · Zbl 1059.83509 · doi:10.1063/1.532782
[31] Beig, R., and Murchadha, Ó. ( · Zbl 0617.70021 · doi:10.1016/0003-4916(87)90037-6
[32] Andersson, L · Zbl 0646.58035 · doi:10.1016/0393-0440(87)90016-7
[33] Landau, L., and Lifschitz, E. (1951) ”The Classical Theory of Fields” (Addison-Wesley, Cambridge).
[34] De Witt, · Zbl 0158.46504 · doi:10.1103/PhysRev.160.1113
[35] De Witt, · Zbl 0161.46501 · doi:10.1103/PhysRev.162.1195
[36] Hawking, S. W., and Horowitz, G. T. (199 · Zbl 0860.58052 · doi:10.1088/0264-9381/13/6/017
[37] Brill, D. M., and Jang, P. S. (1980). ”The Positive Mass Conjecture,” in ”General Relativity and Gravitation,” Vol. 1, ed. Held, A. Plenum, New York.
[38] Stephani, H. (1996). ”General Relativity” Cambridge Univ. Press, Cambridge.
[39] Trautman, A. (1962). In: ”Gravitation, an Introduction to Current Research,” ed. Witten, L. Wiley, New York.
[40] Solov’ev, V. O. (1 · Zbl 0596.53062 · doi:10.1007/BF01036133
[41] Bergmann, P. G. · Zbl 0098.42501 · doi:10.1103/RevModPhys.33.510
[42] Marolf, D. (1996). Class Quantum Grav., 13, 1871. · Zbl 0858.53060 · doi:10.1088/0264-9381/13/7/017
[43] Barbour, J. (1995). ”General Relativity as a Perfectly Machian Theory,” in ”Mach’s Principle: From Newton’s Bucket to Quantum Gravity,” eds. Barbour, J. B., and Pfister, H., Einstein’s Studies n.6 (Birkh äuser, Boston).
[44] Pauri, M., and Prosperi, M · Zbl 0316.22021 · doi:10.1063/1.522701
[45] Choquet-Bruhat, Y., Fischer, A., and Marsden, J. E. (1979). ”Maximal Hypersurfaces and Positivity of Mass,” LXVII E. Fermi Summer School of Physics ”Isolated Gravitating Systems in General Relativity,” ed. Ehlers, J. (North-Holland, Amsterdam).
[46] Soffel, M. H. (1989). ”Relativity in Astrometry, Celestial Mechanics and Geodesy” (Springer, Berlin).
[47] Abbati, M. C., Cirelli, R., Maniá, A., and Michor, P · Zbl 0692.58010 · doi:10.1016/0393-0440(89)90015-6
[48] Schmidt, R. (1987). ”Infinite Dimensional Hamiltonian Systems” (Bibliopolis, Napoli.) J. Milnor, (1984). In: ”Relativity, Groups and Topology II,” Les Houches 1983, (De Witt, B. S., and Stora, R. Eds.), (Elsevier, Amsterdam).
[49] Bao, D., Isenberg, J., and Yasskin, P. B. ( · Zbl 0577.53050 · doi:10.1016/0003-4916(85)90006-5
[50] Helgason, S. (1962). ”Differential Geometry and Symmetric Spaces” (Academic Press, New York). · Zbl 0111.18101
[51] Kobayashi, S., and Nomizu, K. (1963). ”Foundations of Differential Geometry,” Vol. I (Interscience, New York, 1963). · Zbl 0119.37502
[52] Fischer, A. E. ”The Theory of Superspace,” (1970). In: ”Relativity,” eds. Carmeli, M., Fickler, L., and Witten, L. (Plenum, New York
[53] Timothy Swift, S · Zbl 0766.55010 · doi:10.1063/1.529868
[54] Arms, J. M., Marsden, J. E., and Moncrief, V. (19 · Zbl 0486.58008 · doi:10.1007/BF02046759
[55] Moncrief, V · Zbl 0416.58008 · doi:10.1063/1.524126
[56] Cendra, H., Ibort, A., and Marsden, J · Zbl 0652.58025 · doi:10.1016/0393-0440(87)90026-X
[57] Giulini, D.
[58] Lee, J., and Wald, R. M · Zbl 0704.70013 · doi:10.1063/1.528801
[59] Antonsen, F., and Markopoulou, F. ”4D Diffeomorphisms in Canonical Gravity and Abelian Deformations,” Imperial/TP/96-97/26 (GR-QC/9702046).
[60] Teitelboim, C. (1980). ”The Hamiltonian Structure of Space-Time,” In: ”General Relativity and Gravitation,” ed. Held, A. Vol.I (Plenum, New York).
[61] Kuchar, K. (1993). ”Canonical Quantum Gravity” In: ”General Relativity and Gravitation” Int.Conf. GR13, Cordoba (Argentina) 1992, eds. Gleiser, R. J., Kozameh, C. N., and Moreschi, O. M. (IOP, Bristol).
[62] Beig, R. (1994). ”The Classical Theory of Canonical General Relativity,” in ”Canonical Gravity: From Classical to Quantum,” Bad Honnef 1993, eds. Ehlers, J., and Friedrich, H. Lecture Notes Phys. 434 (Springer, Berlin).
[63] Kuchar, · Zbl 1107.83310 · doi:10.1103/PhysRevD.4.955
[64] Misner, C. W. · Zbl 0177.28701 · doi:10.1103/PhysRevLett.22.1071
[65] York, jr., J. W. (1979). ”Kinematics and Dynamics of General Relativity,” in ”Sources of Gravitational Radiation,” Battelle-Seattle Workshop 1978, ed. Smarr, L. L. (Cambridge Univ. Press, Cambridge). Qadir, A., and Wheeler, J. A. (1985). ”York’s Cosmic Time Versus Proper Time,” in ”From SU(3) to Gravity,” Y. Ne’eman’s festschrift, eds. E. Gotsma and G. Tauber (Cambridge Univ. Press, Cambridge).
[66] Isham, C. J. (1993). ”Canonical Quantum Gravity and the Problem of Time,” in ”Integrable Systems, Quantum Groups and Quantum Field Theories,” eds. Ibort, L. A. and Rodriguez, M. A. Salamanca 1993 (Kluwer, London); (1991). ”Conceptual and Geometrical Problems in Quantum Gravity,” in ”Recent Aspects of Quantum Fields,” Schladming 1991, eds. H.Mitter and H.Gausterer (Springer, Berlin); (1994). ”Prima Facie Questions in Quantum Gravity” and ”Canonical Quantum Gravity and the Question of Time,” in ”Canonical Gravity: From Classical to Quantum,” eds. J.Ehlers and H.Friedrich (Springer, Berlin).
[67] Kuchar, K. (1992). ”Time and Interpretations of Quantum Gravity,” in Proc. 4th Canadian Conf. on ”General Relativity and Relativistic Astrophysics,” eds. Kunstatter, G., Vincent, D., and Williams, J. (World Scientific, Singapore).
[68] Kuchar, K. (1981). ”Canonical Methods of Quantization,” in ”Quantum Gravity 2,” eds. Isham, C. J., Penrose, R., and Sciama, D. W. (Clarendon Press, Oxford).
[69] Baierlein, R. F., Sharp, D. H., and Wheeler, · Zbl 0109.20902 · doi:10.1103/PhysRev.126.1864
[70] Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation (Freeman, New York).
[71] Parentani, R. (1997). ”The Notions of Time and Evolution in Quantum Cosmology,” GR-QC/9710130. · Zbl 0939.83018
[72] Kiefer, C., (1994). ”The Semiclassical Approximation to Quantum Gravity” in ”Canonical Gravity - from Classical to Quantum,” ed. Ehlers, J., (Springer, Berlin). (1994). ”Semiclassical Gravity and the Problem of Time,” in Proc. Cornelius Lanczos Int.Centenary Conf., eds. Chu, M., Flemmons, R., Brown, D., and Ellison, D., (SIAM
[73] Bartnik, R., and Fodor, · doi:10.1103/PhysRevD.48.3596
[74] Giulini, D. · Zbl 0948.83009 · doi:10.1063/1.532877
[75] Lusanna, L., · doi:10.1007/BF02874050
[76] Lichnerowicz, A. (19
[77] York, jr, J.W. · doi:10.1103/PhysRevLett.26.1656
[78] Choquet-Bruhat, Y., and York, jr., J. W. (1980). ”The Cauchy Problem,” in ”General Relativity and Gravitation,” vol.1, ed. Held, A. (Plenum, New York).
[79] Ciufolini, I., and Wheeler, J. A. (1995). ”Gravitation and Inertia” (Princeton University Press, Princeton). · Zbl 0828.53069
[80] Schoen, R., and Yau, S. T. · doi:10.1103/PhysRevLett.43.1457
[81] Isenberg, J., and Marsden, J. E · Zbl 0589.53071 · doi:10.1016/0393-0440(84)90015-9
[82] Moncrief, V · doi:10.1063/1.522723
[83] Isenberg, J. · doi:10.1103/PhysRevLett.59.2389
[84] Isenberg, J. (199 · Zbl 0840.53056 · doi:10.1088/0264-9381/12/9/013
[85] Isenberg, J., and Moncrief, V., (199 · Zbl 0860.53056 · doi:10.1088/0264-9381/13/7/015
[86] Bartnik, R., (19 · Zbl 0647.53044 · doi:10.1007/BF01218388
[87] Dirac, P. A. M. · Zbl 0035.26803 · doi:10.1103/RevModPhys.21.392
[88] Gaida, R. P., Kluchkovsky, Yu. B. and Tretyak, V. I. (1 · doi:10.1007/BF01019024
[89] Lusanna, L. · doi:10.1016/0370-1573(90)90107-D
[90] Batalin, I. A., and Vilkoviski, G. · doi:10.1016/0550-3213(84)90227-X
[91] Synge, J. L. (1960). ”Relativity: the General Theory” (North-Holland, Amsterdam, 1960). · Zbl 0090.18504
[92] Hwang, · doi:10.1016/0550-3213(91)90096-G
[93] Dirac, P. A. M. (1962). in ”Recent Developments in General Relativity,” Pergamon Press, Oxford, and PWN-Polish Scientific Publishers, Warsaw.
[94] Isham, C. J. and Kuchar, K., (1984). Ann. Phys. (N.Y.) 164, 288 and 316. Kuchar, · Zbl 0617.58008 · doi:10.1016/0003-4916(85)90018-1
[95] Cartan, E., (1951). ”Lecons sur la Geometrie des Espaces de Riemann,” 2nd edn. (Gauthier-Villars, Paris).
[96] Spivak, M., (1970). ”Differential Geometry,” vol. 2 (Publish or Perish, Boston). · Zbl 0202.52001
[97] Chester, C. R. (1971). ”Techniques in Partial Differential Equations” (McGraw-Hill Kogakusha, Tokyo). · Zbl 0209.12002
[98] Sugano, R., Kagraoka, Y., and Kimura, T., (199 · doi:10.1142/S0217751X92000041
[99] Lifshitz, E. M., and Khalatnikov, I. · doi:10.1080/00018736300101283
[100] Bona, C., Massó, J., Seidel, E., and Walker, P., ”Three Dimensional Numerical Relativity with a Hyperbolic Formulation,” GR-QC/9804052.
[101] Choquet-Bruhat, Y., Isenberg, J., and York, J. W. Jr., ”Einstein Constraints on Asymptotically Euclidean Manifolds,” GR-QC/9906095. Anderson, A., Choquet-Bruhat, Y., and York, J., Jr., ”Einstein’s Equations and Equivalent Dynamical Systems,” GR-QC/9907099 and (1997). ”Curvature-Based Hyperbolic Systems for General Relativity,” talk at the 8th M. Grossmann eeting (Jerusalem, Israel), GR-QC/9802027. Anderson, A., and York, J. W., Jr. (1
[102] Bergmann, P. G., and Komar, A. B. · doi:10.1103/PhysRevLett.4.432
[103] Stewart, J. (1993). ”Advanced General Relativity,” (Cambridge Univ. Press, Cambridge). · Zbl 0752.53048
[104] d’Inverno, R. A., and Stachel, J · doi:10.1063/1.523650
[105] Kuchar, K. · doi:10.1063/1.1666050
[106] Smolin, L., ”The present moment in quantum cosmology: challenges to the arguments for the elimination of time,” (GR-QC/0104097).
[107] Witten, E. (19 · Zbl 1051.83532 · doi:10.1007/BF01208277
[108] Sen, A · Zbl 0900.53029 · doi:10.1063/1.525125
[109] Sen, A. (198 · doi:10.1007/BF01880262
[110] Ashtekar, A., (1988). ”New Perspectives in Canonical Gravity” (Bibliopolis, Napoli). · Zbl 0704.53056
[111] Penrose, R., and Rindler, W., (1986). ”Spinors and Space-Time” vol.1 and 2. (Cambridge Univ. Press, Cambridge). · Zbl 0591.53002
[112] Choquet-Bruhat, Y., and Christodoulou · Zbl 0484.58028 · doi:10.1007/BF02392460
[113] Frauendiener, J., (199 · Zbl 0739.53064 · doi:10.1088/0264-9381/8/10/013
[114] Frauendiener, J., (198 · Zbl 0687.53071 · doi:10.1088/0264-9381/6/12/001
[115] Einstein, A. (1916). Sitzungsber Preuss. Aka
[116] Møller, C., (1961). Ann. Phys. (N.Y.) 12, 118; in Proc. Int. School of Physics Fermi, E., (1962). Course XX (Academic Press, New York). · Zbl 0096.22003 · doi:10.1016/0003-4916(61)90148-8
[117] Pirani, F. A. E. (1962). ”Gauss’ Theorem and Gravitational Energy,” in ”Les Theories Relativistes de la Gravitation,” Proc. Int. Conf. at Royaumont 1959, eds. Lichnerowicz, A., and Tonnelat, M. A. CNRS, Paris.
[118] Goldberg, J. · doi:10.1103/PhysRevD.37.2116
[119] Rose · Zbl 0023.18705 · doi:10.1103/PhysRev.57.147
[120] Petrov, A. Z. (1969). ”Einstein Spaces” (Pergamon, Oxford. · Zbl 0174.28305
[121] Robinson, D. C. (198 · Zbl 0673.53040 · doi:10.1088/0264-9381/6/8/001
[122] Bailey, I., and Israel, W. (1980). Ann. Phys. (N.Y.) 130, 188. · doi:10.1016/0003-4916(80)90231-6
[123] Dixon, W. G · doi:10.1063/1.1705397
[124] Kovalevvsky, J., Mueller, I. I., and Kolaczek, B. (eds.) (1989). ”Reference Frames in Astronomy and Geophysics” (Kluwer, Dordrecht).
[125] Dixon, W. G. · doi:10.1007/BF02412488
[126] DeWitt, B. S., and Brehme, R. W. (1960). Ann. Phys. (N.Y.) 9, 220. · Zbl 0092.45003 · doi:10.1016/0003-4916(60)90030-0
[127] Norton, J. D. (1989). ”What was Einstein’s Principle of Equivalence?,” in ”Einstein and the History of General Relativity: Einstein Studies,” Vol. 1, eds. Howard, D., and Stachel, J. (Birkhäuser, Boston).
[128] Abramowicz, M. A. (1993). ”Inertial Forces in General Relativity,” in ”The Renaissance of General Relativity and Cosmology,” eds. G. Ellis, A. Lanza and J. Miller (Cambridge Univ. Press, Cambridge, 1993). Sonego, S., and Massar,M. (199
[129] Pauri, M., and Vallisneri, M. (1999). ”Classical Roots of the Unruh and Hawking · doi:10.1023/A:1018821619763
[130] Lusanna, L., and Nowak-Szczepaniak, D. (200
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.