×

A stable numerical method for singularly perturbed Fredholm integro differential equation using exponentially fitted difference method. (English) Zbl 1531.65282

Summary: This paper implemented a stable numerical scheme for solving singularly perturbed linear second-order Fredholm integro-differential equation. A parameter-uniform numerical method was constructed using an exponentially fitted finite difference method to approximate the differential part and the composite Simpson 1/3 rule for the integral part of the equation. The scheme’s stability and convergence analysis has been carried out. The maximum absolute errors and the rate of convergence are tabulated for different values of the perturbation parameter \(\varepsilon\) and mesh sizes using different numerical test examples.

MSC:

65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
45B05 Fredholm integral equations
65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Amiraliyev, G. M.; Durmaz, M. E.; Kudu, M., A numerical method for a second order singularly perturbed Fredholm integro-differential equation. Miskolc Math. Not. (2021) · Zbl 1474.65488
[2] Aziz, I.; Fayyaz, M., A new approach for numerical solution of integro-differential equations via Haar wavelets. Int. J. Comput. Math., 9, 1971-1989 (2013) · Zbl 1291.45001
[3] Cimen, E.; Cakir, M., A uniform numerical method for solving singularly perturbed Fredholm integro-differential problem. Comput. Appl. Math., 1-14 (2021) · Zbl 1476.65336
[4] Miller, J. J.; O’riordan, E.; Shishkin, G. I., Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions (1996), World scientific · Zbl 0915.65097
[5] Woldaregay, M. M.; Duressa, G. F., Higher-order uniformly convergent numerical scheme for singularly perturbed differential difference equations with mixed small shifts. Int. J. Differ. Equ. Appl., 1-15 (2020) · Zbl 1471.65092
[6] Woldaregay, M. M.; Aniley, W. T.; Duressa, G. F., Novel numerical scheme for singularly perturbed time delay convection-diffusion equation. Adv. Math. Phys., 1-13 (2021) · Zbl 1481.65164
[7] Amiraliyev, G. M.; Durmaz, M. E.; Kudu, M., Uniform convergence results for singularly perturbed Fredholm integro-differential equation. J. Math. Anal., 6, 55-64 (2018)
[8] Cakir, M.; Gunes, B., A fitted operator finite difference approximation for singularly perturbed Volterra-Fredholm integro-differential equations. Mathematics, 19, 3560 (2022)
[9] Aigo, M., On the numerical approximation of Volterra integral equations of the second kind using quadrature rules. Int. J. Adv. Sci. Tech. Res., 3, 558-564 (2013)
[10] Yüzbaşi, Ş., An exponential method to solve linear Fredholm-Volterraintegro-differential equations and residual improvement. Turkish J. Math., 5, 2546-2562 (2018) · Zbl 1424.45018
[11] Iragi, B. C.; Munyakazi, J. B., A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation. Int. J. Comput. Math., 4, 759-771 (2020) · Zbl 1480.65377
[12] Yapman, Ö.; Amiraliyev, G. M.; Amirali, I., Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay. J. Comput. Appl. Math., 301-309 (2019) · Zbl 1415.65170
[13] Panda, A.; Mohapatra, J.; Amirali, I., A second-order post-processing technique for singularly perturbed Volterra integro-differential equations. Mediterr. J. Math., 1-25 (2021) · Zbl 07418711
[14] Panda, A.; Mohapatra, J.; Reddy, N. R., A comparative study on the numerical solution for singularly perturbed Volterra integro-differential equations. Comput. Math. Model., 364-375 (2021) · Zbl 1492.65216
[15] Ghosh, B.; Mohapatra, J., An iterative difference scheme for solving arbitrary order nonlinear Volterra integro-differential population growth model. J. Anal., 1-16 (2023)
[16] Durmaz, M. E.; Amirali, I.; Mohapatra, J.; Amiraliyev, G. M., A second-order numerical approximation of a singularly perturbed nonlinear Fredholm integro-differential equation. Appl. Numer. Math., 17-28 (2023), URL https://www.sciencedirect.com/science/article/pii/S0168927423001289 · Zbl 07710423
[17] Panda, A.; Mohapatra, J., A robust finite difference method for the solutions of singularly perturbed Fredholm integro-differential equations. Mediterr. J. Math., 4, 198 (2023) · Zbl 1511.65156
[18] Ghosh, B.; Mohapatra, J., An iterative scheme for solving arbitrary-order nonlinear Volterra integro-differential equations involving delay. Iran. J. Sci., 3, 851-861 (2023)
[19] Santra, S.; Panda, A.; Mohapatra, J., A novel approach for solving multi-term time fractional Volterra-Fredholm partial integro-differential equations. J. Appl. Math. Comput., 1-19 (2021)
[20] Durmaz, M. E.; Amiraliyev, G. M., A robust numerical method for a singularly perturbed Fredholm integro-differential equation. Mediterr. J. Math., 1, 24 (2021) · Zbl 1461.65216
[21] Turuna, D. A.; Woldaregay, M. M.; Duressa, G. F., Uniformly convergent numerical method for singularly perturbed convection-diffusion problems. Kyungpook Math. J., 3, 629-645 (2020)
[22] Woldaregay, M. M.; Duressa, G. F., Accurate numerical scheme for singularly perturbed parabolic delay differential equation. BMC Res. Not., 1-6 (2021)
[23] Doolan, E. P.; Miller, J. J.; Schilders, W. H., Uniform Numerical Methods for Problems with Initial and Boundary Layers (1980), Boole Press · Zbl 0459.65058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.