×

A numerical scheme for singularly perturbed delay differential equations of convection-diffusion type on an adaptive grid. (English) Zbl 1488.65158

Summary: In this paper, an adaptive mesh strategy is presented for solving singularly perturbed delay differential equation of convection-diffusion type using second order central finite difference scheme. Layer adaptive meshes are generated via an entropy production operator. The details of the location and width of the layer is not required in the proposed method unlike the popular layer adaptive meshes mainly by Bakhvalov and Shishkin. An extensive amount of computational work has been carried out to demonstrate the applicability of the proposed method.

MSC:

65L03 Numerical methods for functional-differential equations
65L10 Numerical solution of boundary value problems involving ordinary differential equations
65L11 Numerical solution of singularly perturbed problems involving ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations

References:

[1] G.M. Amiraliyev and E. Cimen. Numerical method for a singularly perturbed convection-diffusion problem with delay. Appl. Math. Comp., 216:2351-2359, 2010. https://doi.org/10.1016/j.amc.2010.03.080. · Zbl 1195.65089 · doi:10.1016/j.amc.2010.03.080
[2] G.M. Amiraliyev and F. Erdogan. Uniform numerical method for singularly perturbed delay differential equations. Comput. Math. Applicat., 53:1251-1259., 2007. https://doi.org/10.1016/j.camwa.2006.07.009. · Zbl 1134.65042 · doi:10.1016/j.camwa.2006.07.009
[3] I.G. Amiraliyeva, F. Erdogan and G.M. Amiraliyev. A uniform numerical method for dealing with a singularly perturbed delay initial value problem. Appl. Math. L., 23:1221-1225, 2010. https://doi.org/10.1016/j.aml.2010.06.002. · Zbl 1207.65091 · doi:10.1016/j.aml.2010.06.002
[4] N.S. Bakhvalov. On the optimization of the methods for solving boundary value problems in the presence of boundary layers. Zh. Vychisl. Mater. Fiz., 9:841-859, 1969. · Zbl 0208.19103
[5] K. Bansal, P. Rai and K.K. Sharma. Numerical treatment for the class of time dependent singularly perturbed parabolic problems with general shift arguments. · Zbl 1372.65227
[6] Diff. Equ. Dyn. Sys., 25(2):327-346, 2017. https://doi.org/10.1007/s12591-015-0265-7. · Zbl 1372.65227 · doi:10.1007/s12591-015-0265-7
[7] K. Bansal and K.K. Sharma. Parameter uniform numerical scheme for time de-pendent singularly perturbed convection-diffusion-reaction problems with gen-eral shift arguments. Num. Algor., 75(1):113-145, 2017. · Zbl 1380.65143
[8] A. Bellen and M. Zennaro. Numerical methods for delay differ-ential Equations. Oxford Science Publications, New York, 2003. https://doi.org/10.1093/acprof:oso/9780198506546.001.0001. · Zbl 1038.65058 · doi:10.1093/acprof:oso/9780198506546.001.0001
[9] P.P. Chakravarthy, S.D. Kumar and R.N. Rao. Numerical solution of second order singularly perturbed delay differential equations via cubic spline in tension. Int. J. Appl. Comput. Math, 3(3):1703-1717, 2016. https://doi.org/10.1007/s40819-016-0204-5. · Zbl 1397.65027 · doi:10.1007/s40819-016-0204-5
[10] Y. Chen and J. Wu. The asymptotic shapes of periodic solutions of a singular delay differential system. J. Diff. Equ., 169:614-632, 2001. https://doi.org/10.1006/jdeq.2000.3910. · Zbl 0976.34060 · doi:10.1006/jdeq.2000.3910
[11] R.V. Culshaw and S. Ruan. A delay differential equation model of hiv infection of CD4+ T-cells. Math. Biosci., 165(1):27-39, 2000. https://doi.org/10.1016/S0025-5564(00)00006-7. · Zbl 0981.92009 · doi:10.1016/S0025-5564(00)00006-7
[12] M.W. Derstine, H.M. Gibbs, F.A. Hopf and D.L. Kaplan. Bifurcation gap in a hybrid optical system. Phys. Rev. A, 26:3720-3722, 1982. https://doi.org/10.1103/PhysRevA.26.3720. · doi:10.1103/PhysRevA.26.3720
[13] R.D. Driver. Ordinary and delay differnential equations. Springer, New York, 1977. https://doi.org/10.1007/978-1-4684-9467-9. · Zbl 0374.34001 · doi:10.1007/978-1-4684-9467-9
[14] F. Erdogan and G.M. Amiraliyev. Fitted finite difference method for singu-larly perturbed delay differential equations. Numer. Algor., 59:131-145, 2012. https://doi.org/10.1007/s11075-011-9480-7. · Zbl 1236.65098 · doi:10.1007/s11075-011-9480-7
[15] P.A. Farrell, A.F. Hegarty, J.J.H. Miller, E. O’Riordan and G.I. Shishkin. Singularly perturbed convection-diffusion problems with boundary and weak interior layers. · Zbl 1041.65059
[16] J. Comput. Appl. Math., 166:133-151, 2004. https://doi.org/10.1016/j.cam.2003.09.033. · Zbl 1041.65059 · doi:10.1016/j.cam.2003.09.033
[17] P.A. Farrell, J.J.H. Miller, E. O’Riordan and G.I. Shishkin. Singularly per-turbed differential equations with discontinuous source terms. In J.J.H. Miller G.I. Shishkin and L. Vulkov(Eds.), Analytical and Numerical Methods for Convection-Dominated and Singularly Perturbed Problems, pp. 23-32, New York, USA, 2000. Nova Science Publishers. Inc.
[18] E.C. Gartland. Graded-mesh difference schemes for singularly perturbed two-point boundary value problems. Math. comput., 51(184):631-657, 1988. https://doi.org/10.1090/S0025-5718-1988-0935072-1. · Zbl 0699.65063 · doi:10.1090/S0025-5718-1988-0935072-1
[19] V.Y. Glizer. Asymptotic solution of a boundary-value problem for linear singularly-perturbed functional differential equations arising in optimal control theory. J. Opt. Th. and Applicat., 106:49-85, 2000. · Zbl 1001.49036
[20] V.Y. Glizer. Block wise estimate of the fundamental matrix of linear sin-gularly perturbed differential systems with small delay and its application to uniform asymptotic solution. J. Math. Anal. Applicat., 278:409-433, 2003. https://doi.org/10.1016/S0022-247X(02)00715-1. · Zbl 1028.34059 · doi:10.1016/S0022-247X(02)00715-1
[21] M. Kot. Elements of Mathematical Ecology. Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511608520. · Zbl 1060.92058 · doi:10.1017/CBO9780511608520
[22] Y. Kuang. Delay Differential Equations with Applications in Population Dynam-ics. Academic Press, New York, 1993. · Zbl 0777.34002
[23] V. Kumar and B. Srinivasan. An adaptive mesh strategy for singularly per-turbed convection diffusion problems. Appl. Math. Modell., 39:2081-2091, 2015. https://doi.org/10.1016/j.apm.2014.10.019. · Zbl 1443.65103 · doi:10.1016/j.apm.2014.10.019
[24] C.G. Lange and R.M. Miura. Singular perturbation analysis of boundary-value problems for differential-difference equations. SIAM J. Appl. Math., 42:502-531, 1982. https://doi.org/10.1137/0142036. · Zbl 0515.34058 · doi:10.1137/0142036
[25] R.J. Leveque. Finite volume methods for hyperbolic problems. Cambridge Uni-versity Press, 2002. https://doi.org/10.1017/CBO9780511791253. · Zbl 1010.65040 · doi:10.1017/CBO9780511791253
[26] T. Linb. Layer-adapted meshes for convection diffusion problems. Comput. Meth-ods Appl. Mech. Eng., 192:1061-1105, 2003. https://doi.org/10.1016/S0045-7825(02)00630-8. · Zbl 1022.76036 · doi:10.1016/S0045-7825(02)00630-8
[27] V.D. Liseikin. The use of special transformations in the numerical solution of boundary value problems. Comput. Math. Math. Phys., 30:43-53, 1990. https://doi.org/10.1016/0041-5553(90)90006-E. · Zbl 0721.65044 · doi:10.1016/0041-5553(90)90006-E
[28] A. Longtin and G.J. Milton. Complex oscillations in the human pupil light reflex with mixed and delayed feedback. Math. Biosci., 90:183-199, 1988. https://doi.org/10.1016/0025-5564(88)90064-8. · doi:10.1016/0025-5564(88)90064-8
[29] M.C. Mackey and L. Glass. Oscillation and chaos in physiological control sys-tems. Science, 197:287-289, 1977. https://doi.org/10.1126/science.267326. · Zbl 1383.92036 · doi:10.1126/science.267326
[30] J.M. Mahaffy, J. Belair and M.C. Mackey. Hematopoietic model with moving boundary condition and state dependent delay: application in erythropoiesis.
[31] J. Theoret. Biol., 190:135-146, 1998. https://doi.org/10.1006/jtbi.1997.0537. · doi:10.1006/jtbi.1997.0537
[32] J. Mallet-Paret and R.D. Nussbaum. A differential-delay equations aris-ing in optics and physiology. SIAM J. Math. Anal., 20:249-292, 1989. https://doi.org/10.1137/0520019. · Zbl 0676.34043 · doi:10.1137/0520019
[33] H. Mayer, K.S. Zaenker and U. an der Heiden. A basic mathematical model of immune response. Chaos, 5:155-161, 1995. https://doi.org/10.1063/1.166098. · doi:10.1063/1.166098
[34] J.J.H. Miller, E.O. Riordan and I.G. Shishkin. Fitted numerical meth-ods for singular perturbation problems. Word Scientific, Singapore, 1996. https://doi.org/10.1142/2933. · Zbl 0915.65097 · doi:10.1142/2933
[35] J.D. Murray. Mathematical Biology. An Introduction, Springer, 2002. · Zbl 1006.92001
[36] P.W. Nelson and A.S. Perelson. Mathematical analysis of delay differen-tial equation models of HIV-1 infection. Math. Biosci., 179:73-94, 2002. https://doi.org/10.1016/S0025-5564(02)00099-8. · Zbl 0992.92035 · doi:10.1016/S0025-5564(02)00099-8
[37] V. Subburayan and N. Ramanujam. An initial value technique for singularly perturbed convection -diffusion problems with a negative shift. J. Opt. Th. Applicat., 158:234-250, 2013. https://doi.org/10.1007/s10957-012-0200-9. · Zbl 1272.49053 · doi:10.1007/s10957-012-0200-9
[38] R. Vulanovic. On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh. Zb. Rad.,Prir.-Mat. Fak., Univ. Novom Sadu,Ser. Mat., 13:187-201, 1983. · Zbl 0573.65064
[39] R. Vulanovic. Mesh construction for discretization of singularly perturbed Bound-ary value problems. Ph.d thesis, University of Novi sad, 1986. · Zbl 0566.34012
[40] W.J. Wilbur and J. Rinzel. An analysis of Stein’s model for stochastic neuronal excitation. Biol. Cyber., 45:107-114, 1982. https://doi.org/10.1007/BF00335237. · Zbl 0505.92014 · doi:10.1007/BF00335237
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.