×

Critical \(p(x)\)-Kirchhoff problems involving variable singular exponent. (English) Zbl 1498.35280

Summary: In this paper, we investigate a class of critical \(p(x)\)-Kirchhoff problems with a singular term. A nontrivial positive solution is obtained by combining variational methods with an appropriate truncation argument.

MSC:

35J62 Quasilinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] Bonder, JF; Silva, A., Concentration-compactness principle for variable exponent spaces and applications, Electron. J. Differ. Equ., 141, 1-18 (2010) · Zbl 1200.35073
[2] Bonder, JF; Saintier, N.; Silva, A., Existence of solution to a critical equation with variable exponent, Ann. Acad. Sci. Fenn. Math., 37, 579-594 (2012) · Zbl 1263.35118 · doi:10.5186/aasfm.2012.3743
[3] Bonder, JF; Saintier, N.; Silva, A., The concentration-compactness principle for fractional order Sobolev spaces in unbounded-domains and applications to the generalized fractional Brezis-Nirenberg problem, Nonlinear Differ. Equ. Appl. (2018) · Zbl 1407.35201 · doi:10.1007/s00030-018-0543-5
[4] Fu, Y.; Zhang, X., Multiple solutions for a class of \(p(x)\)-Laplacian equations in \({\mathbb{R}}^N\) involving the critical exponent, Proc. R. Soc. A, 466, 1667-1686 (2010) · Zbl 1189.35128 · doi:10.1098/rspa.2009.0463
[5] Liang, S.; Zhang, J., Multiple solutions for a noncooperative \(p(x)\)-Laplacian equations in \({\mathbb{R}}^N\) involving the critical exponent, J. Math. Anal. Appl., 403, 344-356 (2013) · Zbl 1318.35027 · doi:10.1016/j.jmaa.2013.01.003
[6] Mizuta, Y.; Ohno, T.; Shimomura, T.; Shioji, N., Compact embeddings for Sobolev exponents and existence of solutions for nonlinear elliptic problems involving the \(p(x)\)-Laplacian and its critical exponent, Ann. Acad. Sci. Fenn. Math., 35, 115-130 (2010) · Zbl 1202.46034 · doi:10.5186/aasfm.2010.3507
[7] Zhang, X.; Fu, Y., Solution of \(p(x)\)-Laplacian equations with critical exponent and perturbations in \({\mathbb{R}}^N\), Electron. J. Differ. Equ. Conf., 2012, 120, 1-14 (2012) · Zbl 1259.35098
[8] Chung, NT, Infinitely many solutions for a class of \(p(x)\) Kirchhoff type problems with critical exponents, Ann. Polon. Math., 124, 129-149 (2020) · Zbl 1464.35137 · doi:10.4064/ap180827-11-6
[9] Tsouli, N.; Haddaoui, M.; Hssini, EM, Multiple solutions for a critical \(p(x)\)-Kirchhoff type equations, Bol. Soc. Paran. Mat., 38, 197-211 (2020) · Zbl 1431.35014 · doi:10.5269/bspm.v38i4.37697
[10] Fu, Y., The principle of concentration compactness in spaces and its application, Nonlinear Anal., 71, 1876-1892 (2009) · Zbl 1170.35402 · doi:10.1016/j.na.2009.01.023
[11] Dai, G., Hao, R.: Existence of solutions for a \(p(x)\)-Kirchhoff-type equation. Anal. Appl. 359, 275-284 (2009) · Zbl 1172.35401
[12] Diening, L., Harjulehto, P., Hasto, P., Ruz̆ička, M.: Lebesgue and Sobolev spaces with variable exponents. Springer-Verlag, Berlin (2011) · Zbl 1222.46002
[13] Kirchhoff, G., Mechanik (1883), Leipzig: Teubner, Leipzig · JFM 08.0542.01
[14] Liang, S.; Pucci, P.; Zhang, B., Multiple solutions for critical Choquard-Kirchhoff type equations, Adv. Nonlinear Anal., 10, 400-419 (2021) · Zbl 1465.35215 · doi:10.1515/anona-2020-0119
[15] Fiscella, A.; Pucci, P., Degenerate Kirchhoff (p, q)-fractional systems with critical nonlinearities, Fract. Calc. Appl. Anal., 23, 723-752 (2020) · Zbl 1474.35054 · doi:10.1515/fca-2020-0036
[16] Autuori, G.; Pucci, P.; Salvatori, MC, Asymptotic stability for anistropic Kirchhoff systems, J. Math. Anal. Appl., 352, 149-165 (2009) · Zbl 1175.35013 · doi:10.1016/j.jmaa.2008.04.066
[17] Dai, G.; Hao, R., Existence of solutions for a \(p(x)\)-Kirchhoff-type equation, Anal. Appl., 359, 275-284 (2009) · Zbl 1172.35401 · doi:10.1016/j.jmaa.2009.05.031
[18] Duan, L.; Huang, L.; Cai, Z., On existence of three solutions for \(p(x)\)-Kirchhoff type differential inclusion problem via nonsmooth critical point theory, Taiwan. J. Math., 19, 397-418 (2015) · Zbl 1357.35127
[19] Fan, X., On nonlocal \(p(x)\)-Laplacian Dirichlet problems, Nonlinear Anal., 72, 3314-3323 (2010) · Zbl 1189.35127 · doi:10.1016/j.na.2009.12.012
[20] Guo, E.; Zhao, P., Existence and multiplicity of solutions of nonlocal \(p(x)\)-Laplacian problems in \({\mathbb{R}}^N\), Bound. Value Probl. (2012) · Zbl 1281.35053 · doi:10.1186/1687-2770-2012-79
[21] Mokhtari, A.; Moussaoui, T.; O’Regan, D., Existence and multiplicity of solutions for a \(p(x)\)-Kirchhoff type problem via variational techniques, Arch. Math. (Brno), 51, 163-173 (2015) · Zbl 1363.35121 · doi:10.5817/AM2015-3-163
[22] Crandall, MG; Rabinowitz, PH; Tartar, L., On a Dirichlet problem with a singular nonlinearity, Commun. Partial Differ. Equ., 2, 193-222 (1977) · Zbl 0362.35031 · doi:10.1080/03605307708820029
[23] Boulaaras, S.; Guefaifia, R.; Cherif, B.; Radwan, T., Existence result for a Kirchhoff elliptic system involving p-Laplacian operator with variable parameters and additive right hand side via sub and super solution methods, AIMS Math., 6, 2315-2329 (2021) · Zbl 1525.35116 · doi:10.3934/math.2021140
[24] Guo, E., Zhao, P.: Existence and multiplicity of solutions of nonlocal \(p(x)\)-Laplacian problems in \({\mathbb{R}}^N\). Bound. Value Probl. (2012). doi:10.1186/1687-2770-2012-79
[25] Kirchhoff, G.: Mechanik. Teubner, Leipzig, Germany (1883)
[26] Kamache, F.; Guefaifia, R.; Boulaaras, S., Existence of three solutions for perturbed nonlinear fractional p-Laplacian boundary value systems with two control parameters, J. Pseudo-Differ. Oper. Appl., 11, 1781-1803 (2020) · Zbl 1454.35140 · doi:10.1007/s11868-020-00354-y
[27] Piskin, E.; Boulaaras, S.; Irkil, N., Qualitative analysis of solutions for the p-Laplacian hyperbolic equation with logarithmic nonlinearity, Math. Methods Appl. Sci., 44, 4654-4672 (2021) · Zbl 1472.35171 · doi:10.1002/mma.7058
[28] Ben Ali, K.; Ghanmi, A.; Kefi, K., Minimax method involving singular \(p(x)\)-Kirchhoff equation, J. Math. Phys. (2017) · Zbl 1386.35044 · doi:10.1063/1.5010798
[29] Liu, JJ, Positive solutions of the p(x)-Laplace equation with singular nonlinearity, Nonlinear Anal., 72, 4428-4437 (2010) · Zbl 1189.35131 · doi:10.1016/j.na.2010.02.018
[30] Liu, J.; Zhang, Q.; Zhao, C., Existence of positive solutions for \(p(x)\)-Laplacian equations with a singular nonlinear term, Electron. J. Differ. Equ. Conf., 2014, 155, 1-21 (2014) · Zbl 1298.35086
[31] Saoudi, K.; Ghanmi, A., A multiplicity results for a singular equation involving the \(p(x)\)-Laplace operator, Complex Var. Ellipt. Equ. (2016) · Zbl 1346.35212 · doi:10.1080/17476933.2016.1238466
[32] Zhang, Q., Existence and asymptotic behavior of positive solutions to \(p(x)\)-Laplacian equations with singular nonlinearities, J. Inequal. Appl. (2007) · Zbl 1163.35389 · doi:10.1155/2007/19349
[33] Mohammed, A., Positive solutions of the \(p\)-Laplace equation with singular nonlin-earity, J. Math. Anal. Appl., 352, 234-245 (2009) · Zbl 1168.35014 · doi:10.1016/j.jmaa.2008.06.018
[34] Goncalves, JVA; Rezende, MC; Santos, CA, Positive solutions for a mixed and singular quasilinear problem, Nonlinear Anal., 74, 132-140 (2011) · Zbl 1203.35118 · doi:10.1016/j.na.2010.08.024
[35] Liu, J.; Pucci, P.; Wu, H.; Zhang, Q., Existence and blow-up rate of large solutions of \(p(x)\)-Laplacian equations with gradient terms, J. Math. Anal. Appl., 457, 944-977 (2018) · Zbl 1378.35148 · doi:10.1016/j.jmaa.2017.08.038
[36] Lei, CY; Liao, JF; Tang, CL, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents, J. Math. Anal. Appl., 421, 521-538 (2015) · Zbl 1323.35016 · doi:10.1016/j.jmaa.2014.07.031
[37] Debajyoti, C., Existence and Holder regularity of infinitely many solutions to a \(p\)-Kirchhoff-type problem involving a singular nonlinearity without the Ambrosetti-Rabinowitz (AR) condition, Z. Angew. Math. Phys. (2021) · Zbl 1466.35186 · doi:10.1007/s00033-020-01464-9
[38] Colasuonno, F.; Pucci, P., Multiplicity of solutions for p(x)-polyharmonic Kirchhoff equations, Nonlinear Anal., 74, 5962-5974 (2011) · Zbl 1232.35052 · doi:10.1016/j.na.2011.05.073
[39] Rǎdulescu, VD; Repovš, D., Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis (2015), New York: Chapman and Hall/CRC, New York · Zbl 1343.35003 · doi:10.1201/b18601
[40] Zhang, Q.: Existence and asymptotic behavior of positive solutions to \(p(x)\)-Laplacian equations with singular nonlinearities. J. Ineq. Appl (2007). doi:10.1155/2007/19349 · Zbl 1163.35389
[41] Kováčik, O.; Rákosník, G., On spaces \(L^{p(x)}\) and \(W^{1, p(x)}\), Czech. Math. J., 41, 592-618 (1991) · Zbl 0784.46029 · doi:10.21136/CMJ.1991.102493
[42] Musielak, J., Orlicz Spaces and Modular Spaces (1983), Berlin: Springer, Berlin · Zbl 0557.46020 · doi:10.1007/BFb0072210
[43] Fan, X.; Zhao, D., On the spaces \(L^{p(x)}\) and \(W^{m, p(x)}\), J. Math. Anal. Appl., 263, 424-446 (2001) · Zbl 1028.46041 · doi:10.1006/jmaa.2000.7617
[44] Fan, X.; Shen, J.; Zhao, D., Sobolev embedding theorems for spaces \(W^{k, p(x)}(\Omega )\), J. Math. Anal. Appl., 262, 749-760 (2001) · Zbl 0995.46023 · doi:10.1006/jmaa.2001.7618
[45] Mokhtari, A.; Saoudi, K.; Chung, NT, A fractional \(p(x,\cdot )\)-Laplacian problem involving a singular term, Indian J. Pure Appl. Math. (2021) · Zbl 1489.35141 · doi:10.1007/s13226-021-00037-4
[46] Fan, X.; Zhang, Q., Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Anal., 52, 1843-1852 (2003) · Zbl 1146.35353 · doi:10.1016/S0362-546X(02)00150-5
[47] Fan, X.; Zhao, YZ; Zhang, QH, A strong maximum principle for \(p(x)\)-Laplace equations, Chin. J. Contemp. Math., 24, 3, 277-282 (2003) · Zbl 1112.35079
[48] Fan, X., On the sub-supersolution method for \(p(x)\)-Laplacian equations, J. Math. Anal. Appl., 330, 665-682 (2007) · Zbl 1206.35103 · doi:10.1016/j.jmaa.2006.07.093
[49] Ambrosetti, A., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[50] Duan, Y.; Sun, X.; Liao, JF, Multiplicity of positive solutions for a class of critical Sobolev exponent problems involving Kirchhoff-type nonlocal term, Comput. Math. Appl., 75, 9, 3201-3212 (2018) · Zbl 1415.35128 · doi:10.1016/j.camwa.2018.01.041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.