×

Double phase problem with singularity and homogenous Choquard type term. (English) Zbl 07924040

Summary: In this study, we prove in the context of Musielak Sobolev space that, under various assumptions on the data, two positive non-trivial solutions exist to the double phase problem with a singularity and a homogeneous Choquard type on the right-hand side. Our method relies on the Nehari manifold, the Hardy Littlewood-Sobolev inequality, and some variational approaches. The findings presented here generalize some known results.

MSC:

35A15 Variational methods applied to PDEs
35J20 Variational methods for second-order elliptic equations
35J60 Nonlinear elliptic equations
35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)
Full Text: DOI

References:

[1] A. Aberqi, O. Benslimane, M. Elmassoudi and M. A. Ragusa, Nonnegative so-lution of a class of double phase problems with logarithmic nonlinearity, Boun. Val. Prob., 2022, 2022, 1-13. · Zbl 1500.35179
[2] A. Aberqi, O. Benslimane and M. Knifda, On a class of double phase problem involving potentials terms, J. Ellip. Parab. Equ., 2022, 8, 791-811. · Zbl 1501.35199
[3] G. C. Anthal, J. Giacomoni and K. A. Sreenadh, Choquard-type equation with a singular absorption nonlinearity in two dimensions, Math. Meth. Appl. Sci., 2022, 46, 1-24.
[4] R. Arora, A. Fiscella, T. Mukherjee and P. Winkert, Existence of ground state solutions for a Choquard double phase problem, Nonlinear Anal.: Real World Appl., 2023, 73, 103914. · Zbl 1518.35394
[5] O. Benslimane, A. Aberqi and J. Bennouna, Existence results for double phase obstacle problems with variable exponents, J. Ellip. Parab. Equ., 2021, 7, 850-890. · Zbl 1480.35206
[6] S. Cingolani, M. Gallo and K. Tanaka, Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities, Cal. Var. Par. Diff. Equ., 2022, 61, 1-34. · Zbl 1485.35229
[7] F. Colasuonno and M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 2016, 195, 1917-1959. · Zbl 1364.35226
[8] Á. Crespo-Blanco, N. S. Papageorgiou and P. Winkert, Parametric superlinear double phase problems with singular term and critical growth on the boundary, Math. Meth. Appl. Sci., 2022, 45, 2276-2298. · Zbl 1529.35229
[9] L. Diening, et al., Lebesgue and Sobolev Spaces with Variable Exponents, Lec-ture Notes in Math., vol. 2017, Springer, Heidelberg, 2011. · Zbl 1222.46002
[10] H. Fröhlich, Theory of electrical breakdown in ionic crystals, Proc. Roy. Soci. of London. Series A. Mathematical and Physical Sciences, 1937, 172, 230-241.
[11] F. Gao, V. Moroz, M. Yang and S. Zhao, Construction of infinitely many solutions for a critical Choquard equation via local Pohožaev identities, Cal. Var. Par. Diff. Equ., 2022, 61, 1-47. · Zbl 1501.35192
[12] B. Ge and P. Pucci, Quasilinear double phase problems in the whole space via perturbation methods, Adv. Diff. Equ., 2022, 27, 1-30. · Zbl 1486.35205
[13] B. Ge and W. S. Yuan, Existence of at least two solutions for double phase problem, J. Appl. Anal. & Comp., 2022, 12, 1443-1450. · Zbl 07906560
[14] P. Harjulehto and P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Springer, 2019. · Zbl 1436.46002
[15] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 1977, 57, 93-105. · Zbl 0369.35022
[16] E. H. Lieb and M. Loss, “Analysis”, Gradute Studies in Mathematics, AMS, Providence, Rhode island, 2001, 2. · Zbl 0966.26002
[17] J. Liu, J. F. Liao, H. L. Pan and C. L. Tang, On the Choquard equations under the effect of a general nonlinear term, Top. Meth. Nonlinear Anal., 2022, 1-14.
[18] W. Liu and G. Dai, Multiplicity results for double phase problems in R N , J. Math. Phy., 2020, 61, 091508. · Zbl 1454.74028
[19] W. Liu, G. Dai, N. S. Papageorgiou and P. Winkert, Existence of solutions for singular double phase problems via the Nehari manifold method, Anal. Math. Phy., 2022, 12, 75. · Zbl 1496.35185
[20] W. Liu and P. Winkert, Combined effects of singular and superlinear nonlin-earities in singular double phase problems in R N , J. Math. Anal. Appl., 2022, 507, 125762. · Zbl 1490.35168
[21] L. Maia, B. Pellacci and D. Schiera, Symmetric positive solutions to nonlinear Choquard equations with potentials, Cal. Var. Par. Diff. Equ., 2022, 61, 1-34. · Zbl 1485.35238
[22] I. M. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, Classical and Quan. Gravity, 1998, 15, 2733. · Zbl 0936.83037
[23] V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fix. Point Theory and Appl., 2017, 19, 773-813. · Zbl 1360.35252
[24] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer, 1983, Berlin. · Zbl 0557.46020
[25] S. I. Pekar, Untersuchungen uber die Elektronentheorie der Kristalle, Akademie-Verlag, 1954, Berlin. · Zbl 0058.45503
[26] Y. Su and S. Liu, Ground state solutions for critical Choquard equation with singular potential: Existence and regularity, J. Fix. Point Theory and Appl., 2023, 25, 23. · Zbl 1505.35186
[27] X. Xie, T. Wang and W. Zhang, Existence of solutions for the (p, q)-Laplacian equation with nonlocal Choquard reaction, Appl. Math. Lett., 2023, 135, 108418. · Zbl 1500.35191
[28] S. Yao, J. Sun and T. f. Wu, Positive solutions to a class of Choquard type equa-tions with a competing perturbation, J. Math. Anal. Appl., 2022, 516, 126469. · Zbl 1497.35261
[29] W. Zhang, J. Zhang and V. D. Rȃdulescu, Concentrating solutions for sin-gularly perturbed double phase problems with nonlocal reaction, J. Diff. Equ., 2023, 347, 56-103. · Zbl 1505.35024
[30] X. Zhang, Y. Meng and X. He, Analysis of a low linear perturbed Choquard equation with critical growth, J. Fix. Point Theory and Appl., 2023, 25, 3. · Zbl 1505.35187
[31] J. Zuo, D. Choudhuri and D. D. Repovš, Mixed order elliptic problems driven by a singularity, a Choquard type term and a discontinuous power nonlinearity with critical variable exponents, Fra. Cal. Appl. Anal., 2022, 25, 2532-2553. · Zbl 1503.35281
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.