×

An integrated rolling horizon and adaptive-refinement approach for disjoint trajectories optimization. (English) Zbl 1530.90059

Summary: Planning for multiple commodities simultaneously is a challenging task arising in divers applications, including robot motion or various forms of traffic management. Separation constraints between commodities frequently have to be considered to ensure safe trajectories, i.e., paths over time. Discrete decisions to ensure at least one of often multiple possible separation conditions renders planning of best possible continuous trajectories even more complex. Hence, the resulting disjoint trajectories optimization problems are mostly solved sequentially or with restricted planning space, potentially leading to losses in the usage of sparse resources and system capacities. To tackle these drawbacks, we develop a graph-based model for disjoint trajectories optimization with general separation requirements. We present a novel technique to derive a discretization for the full available space of motion. This can depict arbitrary, potentially non-convex, restricted areas. This necessitates solving an integer linear optimization program whose size scales with the number of discretization points. Thus, even for moderately sized instances a sufficiently detailed representation of space and time leads to models too large for state of the art hard- and software. To overcome this issue, we develop an adaptive-refinement algorithm: Starting from an optimal solution to the integer program in a coarse discretization, the algorithm re-optimizes trajectories in an adaptively-refined discretized neighborhood of the current solution. This is further integrated into a rolling horizon approach. We apply our approach to the integrated trajectory optimization and runway scheduling in the surrounding of airports. Computational experiments with realistic instances demonstrate the efficiency of the method.

MSC:

90C11 Mixed integer programming
90C35 Programming involving graphs or networks
90C90 Applications of mathematical programming
90C59 Approximation methods and heuristics in mathematical programming

Software:

ODEA; Gurobi

References:

[1] Bärmann, A.; Liers, F.; Martin, A.; Merkert, M.; Thurner, C.; Weninger, D., Solving network design problems via iterative aggregation, Math Program Comput, 7, 2, 189-217 (2015) · Zbl 1327.90347 · doi:10.1007/s12532-015-0079-1
[2] Bean, JC; Smith, RL, Conditions for the existence of planning horizons, Math Oper Res, 9, 3, 391-401 (1984) · Zbl 0558.90026 · doi:10.1287/moor.9.3.391
[3] Beasley, JE; Krishnamoorthy, M.; Sharaiha, YM; Abramson, D., Scheduling aircraft landings-the static case, Transport Sci, 34, 2, 180-197 (2000) · Zbl 1004.90511 · doi:10.1287/trsc.34.2.180.12302
[4] Bennell, JA; Mesgarpour, M.; Potts, CN, Airport runway scheduling, 4OR, 9, 2, 115-138 (2011) · doi:10.1007/s10288-011-0172-x
[5] Bittner M, Rieck M, Grüter B, Holzapfel F (2015) Optimal conflict free approach trajectories for multiple aircraft. In: ENRI Int. Workshop on ATM/CNS (EIWAC2015)
[6] Bittner M, Rieck M, Grüter B, Holzapfel F (2016) Optimal approach trajectories for multiple aircraft considering disturbances and configuration changes. In: ICAS 30th International congress of the international council of the aeronautical sciences
[7] Blanco M, Borndörfer R, Hoang ND, Kaier A, de las Casas PM, Schlechte T, Schlobach S (2017) Cost projection methods for the shortest path problem with crossing costs 59
[8] Blanco M, Borndörfer R, Hoang ND, Kaier A, Schienle A, Schlechte T, Schlobach S (2016) Solving time dependent shortest path problems on airway networks using super-optimal wind. In: Marc G (ed) 16th Workshop on algorithmic approaches for transportation modelling, optimization, and systems (ATMOS 2016), vol 54, doi:10.4230/OASIcs.ATMOS.2016.12 · Zbl 1432.90016
[9] Bonami, P.; Lodi, A.; Tramontani, A.; Wiese, S., On mathematical programming with indicator constraints, Math Program, 151, 1, 191-223 (2015) · Zbl 1328.90086 · doi:10.1007/s10107-015-0891-4
[10] Borndörfer, R.; Danecker, F.; Weiser, M., A discrete-continuous algorithm for free flight planning, Algorithms (Basel), 14, 1, 4 (2021) · doi:10.3390/a14010004
[11] Borndörfer R, Reuther M, Schlechte T (2014) A coarse-to-fine approach to the railway rolling stock rotation problem 42:79-91. doi:10.4230/OASIcs.ATMOS.2014.79
[12] Bresenham, JE, Algorithm for computer control of a digital plotter, IBM Syst J, 4, 1, 25-30 (1965) · doi:10.1147/sj.41.0025
[13] Caimi G, Fischer F, Schlechte T (2018) Railway track allocation. Handbook of Optimization in the Railway Industry 268:141-160. doi:10.1007/978-3-319-72153-8 · Zbl 1396.90001
[14] Chand, S.; Sethi, SP; Proth, JM, Existence of forecast horizons in undiscounted discrete-time lot size models, Oper Res, 38, 5, 884-892 (1990) · Zbl 0723.90013 · doi:10.1287/opre.38.5.884
[15] Dias FH, Rahme S, Rey D (2020) A two-stage algorithm for aircraft conflict resolution with trajectory recovery. arXiv preprint arXiv:2002.06731
[16] Fattahi, M.; Govindan, K., Data-driven rolling horizon approach for dynamic design of supply chain distribution networks under disruption and demand uncertainty, Decis Sci, 53, 1, 150-180 (2022) · doi:10.1111/deci.12481
[17] Fischer, F.; Helmberg, C., Dynamic graph generation for the shortest path problem in time expanded networks, Math Program, 143, 1-2, 257-297 (2014) · Zbl 1303.90116 · doi:10.1007/s10107-012-0610-3
[18] Force RT (1995) Final report of rtca task force 3: Free flight implementation. Tech. rep
[19] Fortune, S.; Hopcroft, J.; Wyllie, J., The directed subgraph homeomorphism problem, Theoret Comput Sci, 10, 2, 111-121 (1980) · Zbl 0419.05028 · doi:10.1016/0304-3975(80)90009-2
[20] Gawrilow E, Köhler E, Möhring RH, Stenzel B (2008) Dynamic routing of automated guided vehicles in real-time. In: Mathematics—key technology for the future, Springer, Berlin, pp 165-177, doi:10.1007/978-3-540-77203-3_12,
[21] Geißler B, Martin A, Morsi A, Schewe L (2012) Using piecewise linear functions for solving MINLPs. In: Mixed integer nonlinear programming, IMA Vol. Math. Appl., vol 154, Springer, New York, pp 287-314 · Zbl 1242.90132
[22] Gleixner, AM; Steffy, DE; Wolter, K., Iterative refinement for linear programming, INFORMS J Comput, 28, 3, 449-464 (2016) · Zbl 1348.90460 · doi:10.1287/ijoc.2016.0692
[23] Glomb, L.; Liers, F.; Rösel, F., A rolling-horizon approach for multi-period optimization, Euro J Oper Res, 300, 1, 189-206 (2022) · Zbl 1495.90108 · doi:10.1016/j.ejor.2021.07.043
[24] Grüter B, Bittner M, Rieck M, Diepolder J, Holzapfel F (2016) Optimal sequencing in ATM combining genetic algorithms and gradient based methods to a bilevel approach. In: ICAS 30th International congress of the international council of the aeronautical sciences
[25] Gurobi Optimization, LLC (2022) Gurobi Optimizer Reference Manual. https://www.gurobi.com
[26] Hagelauer P, Mora-Camino F (1998) A soft dynamic programming approach for on-line aircraft 4D-trajectory optimization. Euro J Oper Res 107(1):87-95. doi:10.1016/S0377-2217(97)00221-X, https://hal-enac.archives-ouvertes.fr/hal-01021633 · Zbl 0943.90075
[27] Heidt, A.; Helmke, H.; Kapolke, M.; Liers, F.; Martin, A., Robust runway scheduling under uncertain conditions, J Air Transp Manag, 56, 28-37 (2016) · doi:10.1016/j.jairtraman.2016.02.009
[28] Hoch B, Liers F, Neumann S, Martınez FJZ (2020) The non-stop disjoint trajectories problem. http://www.optimization-online.org/DB_HTML/2020/09/8015.html
[29] Karp, RM, On the computational complexity of combinatorial problems, Networks, 5, 1, 45-68 (1975) · Zbl 0324.05003 · doi:10.1002/net.1975.5.1.45
[30] Khardi, S., Aircraft flight path optimization: the Hamilton-Jacobi-Bellman considerations, Appl Math Sci (Ruse), 6, 25-28, 1221-1249 (2012) · Zbl 1247.90279
[31] Kobayashi, Y.; Sommer, C., On shortest disjoint paths in planar graphs, Discrete Optim, 7, 4, 234-245 (2010) · Zbl 1241.90163 · doi:10.1016/j.disopt.2010.05.002
[32] Kuchar, J.; Yang, L., A review of conflict detection and resolution modeling methods, IEEE Trans Intell Transp Syst, 1, 4, 179-189 (2000) · doi:10.1109/6979.898217
[33] Kuchlbauer M, Liers F, Stingl M (2020) Adaptive bundle methods for nonlinear robust optimization. Informs Journal on Computing · Zbl 07587560
[34] Kuenz A (2015) High performance conflict detection and resolution for multi-dimensional objects
[35] Li, B.; Qi, X.; Yu, B.; Liu, L., Trajectory planning for UAV based on improved ACO algorithm, IEEE Access, 8, 2995-3006 (2020) · doi:10.1109/ACCESS.2019.2962340
[36] Liers, F.; Pardella, G., Simplifying maximum flow computations: the effect of shrinking and good initial flows, Discrete Appl Math, 159, 17, 2187-2203 (2011) · Zbl 1250.05053 · doi:10.1016/j.dam.2011.06.030
[37] Lübbecke, E.; Lübbecke, ME; Möhring, RH, Ship traffic optimization for the kiel canal, Oper Res, 67, 3, 791-812 (2019) · Zbl 1444.90029 · doi:10.1287/opre.2018.1814
[38] Martín-Campo FJ (2010) The collision avoidance problem: methods and algorithms. Ph.D. thesis, Universidad Rey Juan Carlos
[39] Mladenović, N.; Hansen, P., Variable neighborhood search, Comput Oper Res, 24, 11, 1097-1100 (1997) · Zbl 0889.90119 · doi:10.1016/S0305-0548(97)00031-2
[40] Nikoleris A, Erzberger H (2014) Autonomous system for air traffic control in terminal airspace. In: 14th AIAA aviation technology, integration, and operations conference, doi:10.2514/6.2014-2861
[41] Oellrich M (2008) Minimum cost disjoint paths under arc dependences. algorithms for practice. Doctoral thesis, Technische Universität Berlin, Fakultät II - Mathematik und Naturwissenschaften, Berlin, doi:10.14279/depositonce-1857 · Zbl 1209.90005
[42] Pacciarelli, D., Alternative graph formulation for solving complex factory-scheduling problems, Int J Prod Res, 40, 15, 3641-3653 (2002) · Zbl 1032.90013 · doi:10.1080/00207540210136478
[43] Pecsvaradi, T., Optimal horizontal guidance law for aircraft in the terminal area, IEEE Trans Auto Control, 17, 6, 763-772 (1972) · doi:10.1109/TAC.1972.1100160
[44] Pelegrín M, D’Ambrosio C, Delmas R, Hamadi Y (2021) Urban Air Mobility: From Complex Tactical Conflict Resolution to Network Design and Fairness Insights, https://hal.archives-ouvertes.fr/hal-03299573, working paper or preprint
[45] Rey, D.; Rapine, C.; Dixit, VV; Waller, ST, Equity-oriented aircraft collision avoidance model, IEEE Trans Intell Transp Syst, 16, 1, 172-183 (2015) · doi:10.1109/TITS.2014.2329012
[46] Ribeiro M, Ellerbroek J, Hoekstra J (2020) Review of conflict resolution methods for manned and unmanned aviation. Aerospace 7(6), doi:10.3390/aerospace7060079, https://www.mdpi.com/2226-4310/7/6/79
[47] Richards A, How J (2002) Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301), vol 3, pp 1936-1941 vol.3, doi:10.1109/ACC.2002.1023918
[48] Schmidt J, Fügenschuh A (2021) A two-time-level model for mission and flight planning of an inhomogeneous fleet of unmanned aerial vehicles (16, 2021), doi:10.26127/BTUOpen-5461 · Zbl 1517.90085
[49] Schweighofer F, Grüter B, Holzapfel F (2022) Exploration of optimal control based surrogate modeling as a basis for fuel efficient 4D aircraft routing on graphs. Manuscript in preparation
[50] Semenov V, Kostina E (2020) Multi-stage trajectory optimization for multiple aircraft approaching an airport. In: 2020 European control conference (ECC), pp 1490-1495, doi:10.23919/ECC51009.2020.9143942
[51] Sharon G, Stern R, Felner A, Sturtevant NR (2015) Conflict-based search for optimal multi-agent pathfinding. Artif Intell 219:40-66. doi:10.1016/j.artint.2014.11.006, https://www.sciencedirect.com/science/article/pii/S0004370214001386 · Zbl 1328.68235
[52] Toratani D (2016) Study on simultaneous optimization method for trajectory and sequence of air traffic management. Ph.D. thesis, doi:10.13140/RG.2.2.27308.46727
[53] van Den Berg J, Snoeyink J, Lin MC, Manocha D (2009) Centralized path planning for multiple robots: Optimal decoupling into sequential plans. In: Robotics: Science and systems, vol 2, doi:10.15607/RSS.2009.V.018
[54] von Stryk O (1992) Bulirsch R. Direct and indirect methods for trajectory optimization. 37:357-373. doi:10.1007/BF02071065 · Zbl 0784.49023
[55] Wagner, G.; Choset, H., Subdimensional expansion for multirobot path planning, Artif Intell, 219, 1-24 (2015) · Zbl 1328.68236 · doi:10.1016/j.artint.2014.11.001
[56] Yan, Z.; Jouandeau, N.; Cherif, AA, A survey and analysis of multi-robot coordination, Int J Adv Robot Syst, 10, 12, 399 (2013) · doi:10.5772/57313
[57] Yang L, Qi J, Song D, Xiao J, Han J, Xia Y (2016) Survey of robot 3D path planning algorithms. J Control Sci Eng pp Art. ID 7426913, 22, doi:10.1155/2016/7426913 · Zbl 1346.93280
[58] Yu, J.; LaValle, SM, Optimal multirobot path planning on graphs: complete algorithms and effective heuristics, IEEE Trans Robot, 32, 5, 1163-1177 (2016) · doi:10.1109/TRO.2016.2593448
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.