×

Slithering locomotion. (English) Zbl 1378.74046

Childress, Stephen (ed.) et al., Natural locomotion in fluids and on surfaces. Swimming, flying, and sliding. Selected papers based on the presentations at the workshop, University of Minnesota, Minneapolis, MN, USA, June 1–5, 2010. New York, NY: Springer (ISBN 978-1-4614-3996-7/hbk; 978-1-4614-3997-4/ebook). The IMA Volumes in Mathematics and its Applications 155, 117-135 (2012).
Summary: Limbless terrestrial animals propel themselves by sliding their bellies along the ground. Although the study of dry solid-solid friction is a classical subject, the mechanisms underlying friction-based limbless propulsion have received little attention. We review and expand upon our previous work on the locomotion of snakes, who are expert sliders. We show that snakes use two principal mechanisms to slither on flat surfaces. First, their bellies are covered with scales that catch upon ground asperities, providing frictional anisotropy. Second, they are able to lift parts of their body slightly off the ground when moving. This reduces undesired frictional drag and applies greater pressure to the parts of the belly that are pushing the snake forwards. We review a theoretical framework that may be adapted by future investigators to understand other kinds of limbless locomotion.
For the entire collection see [Zbl 1252.76002].

MSC:

74L15 Biomechanical solid mechanics
92C10 Biomechanics
Full Text: DOI

References:

[1] Alexander, RM, Principles of animal locomotion (2003), Princeton: Princeton University Press, Princeton
[2] Avallone, EA; Baumeister, T. III, Marks’ standard handbook for mechanical engineers, 3-23 (1996), New York: McGraw-Hill, New York
[3] Bellairs, A., Life of reptiles, vol 2, 283-331 (1970), New York: Universe books, New York
[4] Buffa, P., Ricerche sulla muscolatura cutanea dei serpenti e considerazioni sulla locomozione di questi animali, Atti Acad Ven Trent, 1, 145-237 (1905)
[5] Burdick, JW; Radford, J.; Chirikjian, GS, A ‘sidewinding’ locomotion gait for hyper-redundant robots, 101-106 (1993), Los Alamitos, CA: In IEEE international conference on robotics and automation, Los Alamitos, CA
[6] Bush, JWM; Hu, DL, Walking on water: biolocomotion at the interface, Ann Rev Fluid Mech, 38, 339-369 (2006) · Zbl 1098.76078 · doi:10.1146/annurev.fluid.38.050304.092157
[7] Chan, B.; Balmforth, N.; Hosoi, A., Building a better snail: lubrication and adhesive locomotion, Phys Fluids, 17, 113101 (2005) · Zbl 1188.76027 · doi:10.1063/1.2102927
[8] Chernousko, FL, Snake-like locomotions of multilink mechanisms, J Vib Cont, 9, 235-256 (2003) · Zbl 1046.70008
[9] Childress, S., Mechanics of swimming and flying (1981), Cambridge: Cambridge University Press, Cambridge · Zbl 0499.76118 · doi:10.1017/CBO9780511569593
[10] Choset, HM, Principles of robot motion: theory, algorithms and implementation (2005), Cambridge: MIT Press, Cambridge · Zbl 1081.68700
[11] Cundall, D.; Siegel, RA; Collins, JT; Novak, SS, Functional morphology, Snakes: ecology and evolutionary biology, 106-140 (1987), Caldwell NJ: Blackburn press, Caldwell NJ
[12] Dorgan, KM; Jumars, PA; Johnson, B.; Boudreau, BP; Landis, E., Burrow elongation by crack propagation. Nature, 433, 475 (2003)
[13] Ernst, CHZ; Zug, GR, Snakes in question (1996), Washington, DC: Smithsonian, Washington, DC
[14] Full, R.; Yamauchi, A.; Jindrich, D., Maximum single leg force production: Cockroaches righting on photoelastic gelatin, J Exp Biol, 198, 2441-2452 (1995)
[15] Gans, C., Terrestrial locomotion without limbs, Amer Zool, 2, 167-182 (1962)
[16] Gasc JP, Gans C (1990) Tests on locomotion of the elongate and limbless lizard anguis fragilis (Squamata: Anguidae), Copeia, pp 1055-1067
[17] Gray, J., The mechanism of locomotion in snakes, J Exp Biol, 23, 101-120 (1946)
[18] Gray, J.; Lissman, HW, The kinetics of locomotion of the grass-snake, J Exp Biol, 26, 354-367 (1950)
[19] Guo, ZV; Mahadevan, L., Limbless undulatory locomotion on land, Proc Natl Acad Sci U S A, 105, 3179-3184 (2008) · doi:10.1073/pnas.0705442105
[20] Hazel, J.; Stone, M.; Grace, MS; Tsukruk, VV, Nanoscale design of snake skin for reptation locomotions via friction anisotropy, J Biomech, 32, 477-484 (1999) · doi:10.1016/S0021-9290(99)00013-5
[21] Heckrote, C., Relations of body temperature, size and crawling speed of the common garter snake, Thamnophis s. sirtalis. Copeia, 4, 759-763 (1967) · doi:10.2307/1441886
[22] Hirose, S., Biologically inspired robots: snake-like locomotors and manipulators (1993), Oxford: Oxford University Press, Oxford
[23] Hu, DL; Nirody, J.; Scott, T.; Shelley, MJ, The mechanics of slithering locomotion, Proceedings of the national academy of sciences, USA, 106, 10081-10085 (2009) · doi:10.1073/pnas.0812533106
[24] Jayne, BC, Kinematics of terrestrial snake locomotion, Copeia, 22, 915-927 (1986) · doi:10.2307/1445288
[25] Juarez, G.; Lu, K.; Sznitman, J.; Arratia, P., Motility of small nematodes in wet granular media, Europhys Lett, 92, 44002 (2010) · doi:10.1209/0295-5075/92/44002
[26] Jung, S., Caenorhabditis elegans swimming in a saturated particulate system, Phys Fluids, 22, 031903 (2010) · Zbl 1188.76068 · doi:10.1063/1.3359611
[27] Lissman, HW, Rectilinear locomotion in a snake (Boa occidentalis), J Exp Biol, 26, 368-379 (1950)
[28] Mahadevan, L.; Daniel, S.; Chaudhury, MK, Biomimetic ratcheting motion of a soft, slender, sessile gel, Proc Natl Acad Sci U S A, 101, 23-26 (2004) · doi:10.1073/pnas.2637051100
[29] Maladen, R.; Ding, Y.; Li, C.; Goldman, D., Undulatory swimming in sand: subsurface locomotion of the sandfish lizard, Science, 325, 314 (2009) · doi:10.1126/science.1172490
[30] Marvi H, Hu D (2012) Friction Enhancement in Concertina Locomotion of Snakes. Journal of the Royal Society Interface (In Press)
[31] Miller, G.; Ayers, JDJ; Rudolph, A., Snake robots for search and rescue, Neurotechnology for biomimetic robots, 269-284 (2002), Cambridge: Bradford/MIT Press, Cambridge
[32] Moon, BR; Gans, C., Kinematics, muscular activity and propulsion in gopher snakes, J Exp Biol, 201, 2669-2684 (1998)
[33] Mosauer, W., On the locomotion of snakes, Science, 76, 583-585 (1932) · doi:10.1126/science.76.1982.583
[34] Mosauer, W., How fast can snakes travel?, Copeia, 1935, 6-9 (1935) · doi:10.2307/1436627
[35] Netting, MG, Size and weight of a boa constrictor, Copeia, 4, 266 (1940)
[36] Ostrowksi, J.; Burdick, J., Gait kinematics for a serpentine robot, 1294-1299 (1996), In: IEEE international conference on robotics and automation, Minneapolis, minnesota, In
[37] Rachevsky, N., Mathematical biophysics: physico-mathematical foundations of biology, vol 2, 256-261 (1938), New York: Dover, New York · JFM 64.1148.01
[38] Renous, S.; Hofling, E.; Gasc, JP, Analysis of the locomotion pattern of two microteiid lizards with reduced limbs, Calyptommatus leiolepis and Nothobachia ablephara (Gymnophthalmidae), Zoology, 99, 21-38 (1995)
[39] Secor, SM; Jayne, BC; Bennett, AC, Locomotor performance and energetic cost of sidewinding by the snake crotalus cerastes, J Exp Biol, 163, 1-14 (1992) · doi:10.1016/0022-0981(92)90143-X
[40] Summers, AP; O’Reilly, JC, A comparative study of locomotion in the caecilians Dermophis mexicanus and Typhlonectes natans (Amphibia: Gymnophiona), Zool J Linn Soc, 121, 65-76 (1997) · doi:10.1111/j.1096-3642.1997.tb00147.x
[41] Teran, J.; Fauci, L.; Shelley, M., Viscoelastic fluid response can increase the speed and efficiency of a free swimmer, Phys Rev Lett, 104, 038101 (2010) · doi:10.1103/PhysRevLett.104.038101
[42] Tong, J.; Ma, Y-H; Ren, L-Q; Li, J-Q, Tribological characteristics of pangolin scales in dry sliding, J Mater Sci Lett, 19, 569-572 (2000) · doi:10.1023/A:1006769926391
[43] Trueman, ER, The locomotion of soft-bodied animals (1975), London: Edward Arnold, London
[44] Walton, M.; Jayne, BC; Bennett, AF, The energetic cost of limbless locomotion, Science, 249, 524-527 (1990) · doi:10.1126/science.249.4968.524
[45] Zmitrowicz, A., Models of kinematics dependent anisotropic and heterogenous friction, Int J Solids Struct, 43, 4407-4451 (2006) · Zbl 1120.74327 · doi:10.1016/j.ijsolstr.2005.07.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.