×

How should a local regime-switching model be calibrated? (English) Zbl 1401.91493

Summary: Local regime-switching models are a natural consequence of combining the concept of a local volatility model with that of a regime-switching model. However, even though R. J. Elliott et al. [Int. J. Theor. Appl. Finance 18, No. 4, Article ID 1550023, 13 p. (2015; Zbl 1337.91095)] have derived a Dupire formula for a local regime-switching model, its calibration still remains a challenge, primarily due to the fact that the derived volatility function for each state involves all the state price variables whereas only one market price is available for model calibration, and a direct implementation of Elliott et al.’s formula [loc. cit.] may not yield stable results. In this paper, a closed system for option pricing and data extraction under the classical regime-switching model is proposed with a special approach, splitting one market price into two “market-implied state prices”. The success of our approach hinges on the recovery of the two local volatility functions being transformed into an optimal control problem, which is solved through the Tikhonov regularization. In addition, an efficient algorithm is proposed to obtain the optimal solution by iteration. Our numerical experiments show that different shapes of local volatility functions can be accurately and stably recovered with the newly-proposed algorithm, and this algorithm also works quite well with real market data.

MSC:

91B82 Statistical methods; economic indices and measures
91B70 Stochastic models in economics
60J28 Applications of continuous-time Markov processes on discrete state spaces
62P05 Applications of statistics to actuarial sciences and financial mathematics
93E20 Optimal stochastic control

Citations:

Zbl 1337.91095

References:

[1] Aı, Y.; Kimmel, R., Maximum likelihood estimation of stochastic volatility models, J. Financ. Econ., 83, 2, 413-452, (2007)
[2] Bakshi, G.; Cao, C.; Chen, Z., Empirical performance of alternative option pricing models, J. Financ., 52, 5, 2003-2049, (1997)
[3] Bates, D. S., Post-’87 crash fears in the S&P 500 futures option market, J. Econom., 94, 1, 181-238, (2000) · Zbl 0942.62118
[4] Black, F.; Scholes, M., The pricing of options and corporate liabilities, J. Polit. Econ., 81, 3, 637-654, (1973) · Zbl 1092.91524
[5] Bollen, N. P., Valuing options in regime-switching models, J. Deriv., 6, 1, 38-49, (1998)
[6] Bouchouev, I.; Isakov, V., The inverse problem of option pricing, Inverse Probl., 13, 5, L11, (1997) · Zbl 0894.90014
[7] Buffington, J.; Elliott, R. J., American options with regime switching, Int. J. Theor. Appl. Financ., 5, 05, 497-514, (2002) · Zbl 1107.91325
[8] CBOE, 2017. https://datashop.cboe.com/option-quotes-end-of-day-with-calcs(accessed 15.02.17.).
[9] Chan, K. C.; Karolyi, G. A.; Longstaff, F. A.; Sanders, A. B., An empirical comparison of alternative models of the short-term interest rate, J. Financ., 47, 3, 1209-1227, (1992)
[10] Chernov, M.; Gallant, A. R.; Ghysels, E.; Tauchen, G., Alternative models for stock price dynamics, J. Econom., 116, 1, 225-257, (2003) · Zbl 1043.62087
[11] Choi, S.-Y.; Fouque, J.-P.; Kim, J.-H., Option pricing under hybrid stochastic and local volatility, Quant. Financ., 13, 8, 1157-1165, (2013) · Zbl 1281.91155
[12] Coleman, T. F.; Li, Y.; Verma, A., Reconstructing the unknown volatility function, J. Comput. Financ., 2, 3, 77-102, (1999)
[13] Crepey, S., Calibration of the local volatility in a generalized Black-Scholes model using Tikhonov regularization, SIAM J. Math. Anal., 34, 5, 1183-1206, (2003) · Zbl 1126.35373
[14] Dai, M.; Tang, L.; Yue, X., Calibration of stochastic volatility models: a Tikhonov regularization approach, J. Econ. Dyn. Control, 64, 66-81, (2016) · Zbl 1401.91466
[15] De Cezaro, A.; Scherzer, O.; Zubelli, J., Convex regularization of local volatility models from option prices: convergence analysis and rates, Nonlinear Anal.: Theory Methods Appl., 75, 4, 2398-2415, (2012) · Zbl 1263.47086
[16] Derman, E.; Kani, I., Riding on a smile, Risk, 7, 2, 32-39, (1994)
[17] Derman, E.; Kani, I.; Zou, J. Z., The local volatility surface: unlocking the information in index option prices, Financ. Anal. J., 52, 4, 25-36, (1996)
[18] Dumas, B.; Fleming, J.; Whaley, R. E., Implied volatility functions: empirical tests, J. Financ., 53, 6, 2059-2106, (1998)
[19] Dupire, B., Pricing with a smile, Risk, 7, 1, 18-20, (1994)
[20] Egger, H.; Engl, H. W., Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates, Inverse Probl., 21, 3, 1027, (2005) · Zbl 1205.65194
[21] Elliott, R. J.; Chan, L.; Siu, T. K., A dupire equation for a regime-switching model, Int. J. Theor. Appl. Financ., 18, 04, 1550023, (2015) · Zbl 1337.91095
[22] Elliott, R. J.; Kuen Siu, T.; Chan, L., Pricing volatility swaps under heston’s stochastic volatility model with regime switching, Appl. Math. Financ., 14, 1, 41-62, (2007) · Zbl 1281.91161
[23] Eraker, B., Do stock prices and volatility jump? reconciling evidence from spot and option prices, J. Financ., 59, 3, 1367-1404, (2004)
[24] Fengler, M. R.; Härdle, W. K.; Villa, C., The dynamics of implied volatilities: a common principal components approach, Rev. Deriv. Res., 6, 3, 179-202, (2003) · Zbl 1059.91038
[25] Gatheral, J., The Volatility Surface: A Practitioner’s Guide, vol. 357, (2011), John Wiley & Sons
[26] Goutte, S., Pricing and hedging in stochastic volatility regime switching models, J. Math. Financ., 3, 01, 70, (2013)
[27] Hagan, P. S.; Kumar, D.; Lesniewski, A. S.; Woodward, D. E., Managing smile risk, The Best of Wilmott, 249, (2002), John Wiley & Sons, Ltd
[28] Hamilton, J. D., A new approach to the economic analysis of nonstationary time series and the business cycle, Econom.: J. Econom. Soc., 57, 2, 357-384, (1989) · Zbl 0685.62092
[29] Hamilton, J. D., Analysis of time series subject to changes in regime, J. Econom., 45, 1, 39-70, (1990) · Zbl 0723.62050
[30] Heston, S. L., A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6, 2, 327-343, (1993) · Zbl 1384.35131
[31] Hofmann, B.; Krämer, R., On maximum entropy regularization for a specific inverse problem of option pricing, J. Inverse Ill-Posed Probl., 13, 1, 41-63, (2005) · Zbl 1086.91029
[32] Ingber, L., High-resolution path-integral development of financial options, Phys. A: Stat. Mech. Appl., 283, 3, 529-558, (2000)
[33] Janczura, J.; Weron, R., Efficient estimation of Markov regime-switching models: an application to electricity spot prices, AStA Adv. Stat. Anal., 96, 3, 385-407, (2012) · Zbl 1443.62471
[34] Jiang, L.; Chen, Q.; Wang, L.; Zhang, J. E., A new well-posed algorithm to recover implied local volatility, Quant. Financ., 3, 6, 451-457, (2003) · Zbl 1405.91626
[35] Kamp, R., 2009. Local volatility modelling (Master’s thesis, University of Twente).
[36] Mikhailov, S.; Nögel, U., Heston’s Stochastic Volatility Model: Implementation, Calibration and Some Extensions, (2004), John Wiley & Sons
[37] Mitra, S.; Date, P., Regime switching volatility calibration by the baum-welch method, J. Comput. Appl. Math., 234, 12, 3243-3260, (2010) · Zbl 1193.91176
[38] Musiela, M.; Rutkowski, M., Martingale Methods in Financial Modelling, vol.36, (2006), Springer Science & Business Media · Zbl 1058.60003
[39] Naik, V., Option valuation and hedging strategies with jumps in the volatility of asset returns, J. Financ., 48, 5, 1969-1984, (1993)
[40] Rebonato, R., Volatility and Correlation: The Perfect Hedger and the Fox, (2005), John Wiley & Sons
[41] Rubinstein, M., Implied binomial trees, J. Financ., 49, 3, 771-818, (1994)
[42] Scott, L. O., Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates: applications of Fourier inversion methods, Math. Financ., 7, 4, 413-426, (1997) · Zbl 1020.91030
[43] Siu, T. K.; Yang, H.; Lau, J. W., Pricing currency options under two-factor Markov-modulated stochastic volatility models, Insur.: Math. Econ., 43, 3, 295-302, (2008) · Zbl 1152.91550
[44] Van der Stoep, A. W.; Grzelak, L. A.; Oosterlee, C. W., The Heston stochastic-local volatility model: efficient Monte Carlo simulation, Int. J. Theor. Appl. Financ., 17, 07, 1450045, (2014) · Zbl 1303.91194
[45] Tikhonov, A. N.; Goncharsky, A.; Stepanov, V.; Yagola, A. G., Numerical Methods for the Solution of Ill-Posed Problems, vol. 328, (2013), Springer Science & Business Media · Zbl 0831.65059
[46] Vogel, C. R., Computational Methods for Inverse Problems, vol. 23, (2002), SIAM · Zbl 1008.65103
[47] Xing, Y.; Zhang, X.; Zhao, R., What does the individual option volatility smirk tell us about future equity returns?, J. Financ. Quant. Anal,, 45, 3, 641-662, (2010)
[48] Yen, J.; Lai, K. K., Emerging Financial Derivatives: Understanding Exotic Options and Structured Products, (2014), Routledge
[49] Zhu, S.-P.; Badran, A.; Lu, X., A new exact solution for pricing European options in a two-state regime-switching economy, Comput. Math. Appl., 64, 8, 2744-2755, (2012) · Zbl 1268.91170
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.