×

Estimating the conditional distribution in functional regression problems. (English) Zbl 07633926

Summary: We consider the problem of estimating the conditional distribution \(\operatorname{P}(Y\in A|X)\) of a functional data object \(Y=(Y(t):t\in [0,1])\) in the space of continuous functions, given covariates \(X\) in a general space and assuming that \(Y\) and \(X\) are related by a functional linear regression model. Two estimation methods are proposed, based on either the empirical distribution of the estimated model residuals, or fitting functional parametric models to the model residuals. We show that consistent estimation can be achieved under relatively mild assumptions. We exemplify a general class of sets \(A\) specifying path properties of \(Y\) that are of interest in applications. The proposed methods are studied in several simulation experiments, and data analyses of electricity price and pollution curves.

MSC:

62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
62J05 Linear regression; mixed models

Software:

fregion; PMTK; ftsa; fda (R)

References:

[1] Aue, A., Norinho, D. D. and Hörmann, S. (2015). On the prediction of stationary functional time series. Journal of the American Statistical Association 110 378-392. · Zbl 1373.62462
[2] AZAIS, J.-M. and WSCHEBOR, M. (2009). Level sets and extrema of random processes and fields. Wiley, Hoboken, NJ. · Zbl 1168.60002
[3] BERLINET, A., ELAMINE, A. and MAS, A. (2011). Local linear regression for functional data. Annals of the Institute of Statistical Mathematics 63 1047-1075. · Zbl 1225.62093 · doi:10.1007/s10463-010-0275-8
[4] BILLINGSLEY, P. (1999). Convergence of probability measures. Wiley. · Zbl 0944.60003
[5] BOENTE, G., BARRERA, M. S. and TYLER, D. E. (2014). A characterization of elliptical distributions and some optimality properties of principal components for functional data. Journal of Multivariate Analysis 131 254-264. · Zbl 1298.62093 · doi:10.1016/j.jmva.2014.07.006
[6] BOSQ, D. (2000). Linear Processes in Function Spaces. Springer. · Zbl 0962.60004
[7] BULINSKAYA, E. V. (1961). On the Mean Number of Crossings of a Level by a Stationary Gaussian Process. Theory of Probability & Its Applications 6 435-438. · Zbl 0108.31002 · doi:10.1137/1106059
[8] CHEN, K. and MÜLLER, H.-G. (2012). Conditional quantile analysis when covariates are functions, with application to growth data. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 74 67-89. · Zbl 1411.62095 · doi:10.1111/j.1467-9868.2011.01008.x
[9] CHEN, K. and MÜLLER, H.-G. (2014). Modeling Conditional Distributions for Functional Responses, With Application to Traffic Monitoring via GPS-Enabled Mobile Phones. Technometrics 56 347-358. · doi:10.1080/00401706.2013.842933
[10] CHERNOZHUKOV, V., FERNÁNDEZ-VAL, I. and GALICHON, A. (2010). Quantile and probability curves without crossing. Econometrica 78 1093-1125. · Zbl 1192.62255 · doi:10.3982/ecta7880
[11] CHIOU, J.-M., MÜLLER, H.-G. and WANG, J.-L. (2004). Functional response models. Statistica Sinica 675-693. · Zbl 1073.62098
[12] CHOI, H. and REIMHERR, M. (2016). A geometric approach to confidence regions and bands for functional parameters. arXiv:1607.07771. · Zbl 1381.62143
[13] CRAMBES, C., HILGERT, N. and MANRIQUE, T. (2016). Estimation of the noise covariance operator in functional linear regression with functional outputs. Statistics and Probability Letters 113 7-15. · Zbl 1383.62082 · doi:10.1016/j.spl.2016.02.006
[14] CRAMBES, C. and MAS, A. (2013). Asymptotics of prediction in functional linear regression with functional outputs. Bernoulli 19 2627-2651. · Zbl 1280.62084 · doi:10.3150/12-bej469
[15] DETTE, H., KOKOT, K. and AUE, A. (2020). Functional data analysis in the Banach space of continuous functions. The Annals of Statistics 48 1168-1192. · Zbl 1456.62085 · doi:10.1214/19-aos1842
[16] FAN, J. and MÜLLER, H.-G. (2021). Conditional Distribution Regression For Functional Responses. Scandinavian Journal of Statistics 49 502-524. · Zbl 1496.62070 · doi:10.1111/sjos.12525
[17] FERNÁNDEZ DE CASTRO, B., GUILLAS, S. and GONZÁLEZ MANTEIGA, W. (2005). Functional Samples and Bootstrap for Predicting Sulfur Dioxide Levels. Technometrics 47 212-222. · doi:10.1198/004017005000000067
[18] FERRATY, F., VAN KEILEGOM, I. and VIEU, P. (2012). Regression when both response and predictor are functions. Journal of Multivariate Analysis 109 10-28. · Zbl 1241.62054 · doi:10.1016/j.jmva.2012.02.008
[19] FERRATY, F. and NAGY, S. (2022). Scalar-on-function local linear regression and beyond. Biometrika 109 439-455. · Zbl 07543333 · doi:10.1093/biomet/asab027
[20] FERRATY, F. and VIEU, P. (2006). Nonparametric functional data analysis: theory and practice. Springer Science & Business Media. · Zbl 1119.62046
[21] FRANKE, J. and NYARIGE, E. G. (2019). A residual-based bootstrap for functional autoregressions. arXiv:1905.07635.
[22] GNEITING, T. and RAFTERY, A. E. (2007). Strictly Proper Scoring Rules, Prediction, and Estimation. Journal of the American Statistical Association 102 359-378. · Zbl 1284.62093 · doi:10.1198/016214506000001437
[23] Goldsmith, J., Greven, S. and Crainiceanu, C. (2013). Corrected confidence bands for functional data using principal components. Biometrics 69 41-51. · Zbl 1274.62776 · doi:10.1111/j.1541-0420.2012.01808.x
[24] GONZÁLEZ, J. P., MUÑOZ SAN ROQUE, A. M. S. and PÉREZ, E. A. (2018). Forecasting Functional Time Series with a New Hilbertian ARMAX Model: Application to Electricity Price Forecasting. IEEE Transactions on Power Systems 33 545-556. · doi:10.1109/TPWRS.2017.2700287
[25] GÓRECKI, T., HÖRMANN, S., HORVÁTH, L. and KOKOSZKA, P. (2018). Testing normality of functional time series. Journal of Time Series Analysis 39 471-487. · Zbl 1416.62489 · doi:10.1111/jtsa.12281
[26] HÖRMANN, S. and KIDZIŃSKI, Ł. (2015). A note on estimation in Hilbertian linear models. Scandinavian journal of statistics 42 43-62. · Zbl 1364.62175 · doi:10.1111/sjos.12094
[27] HÖRMANN, S. and KOKOSZKA, P. (2010). Weakly dependent functional data. The Annals of Statistics 38 1845-1884. · Zbl 1189.62141 · doi:10.1214/09-aos768
[28] HÖRMANN, S., KUENZER, T. and RICE, G. (2022). Supplement to “Estimating the conditional distribution in functional regression problems”. · Zbl 07633926 · doi:10.1214/22-EJS2067SUPP
[29] HYNDMAN, R. J. and SHANG, H. L. (2009). Forecasting functional time series. Journal of the Korean Statistical Society 38 199-211. · Zbl 1293.62267 · doi:10.1016/j.jkss.2009.06.002
[30] HYNDMAN, R. J. and SHANG, H. L. (2020). ftsa: Functional Time Series Analysis R package version 6.0.
[31] IMAIZUMI, M. and KATO, K. (2018). PCA-based estimation for functional linear regression with functional responses. Journal of Multivariate Analysis 163 15-36. · Zbl 1499.62137 · doi:10.1016/j.jmva.2017.10.001
[32] IVANESCU, A., STAICU, A. M., SCHEIPL, F. and GREVEN, S. (2015). Penalized function-on-function regression. Computational Statistics 30 539-568. · Zbl 1317.65037
[33] KATO, K. (2012). Estimation in functional linear quantile regression. The Annals of Statistics 40 3108-3136. · Zbl 1296.62104 · doi:10.1214/12-aos1066
[34] KUDRASZOW, N. L. and VIEU, P. (2013). Uniform consistency of kNN regressors for functional variables. Statistics & Probability Letters 83 1863-1870. · Zbl 1277.62113 · doi:10.1016/j.spl.2013.04.017
[35] LIEBL, D. and REIMHERR, M. (2019). Fast and fair simultaneous confidence bands for functional parameters. arXiv:1910.00131. · Zbl 1444.62160
[36] MAS, A. (2007). Weak convergence in the functional autoregressive model. Journal of Multivariate Analysis 98 1231-1261. · Zbl 1118.60016 · doi:10.1016/j.jmva.2006.05.010
[37] MOUSAVI, S. N. and SØRENSEN, H. (2017). Multinomial functional regression with wavelets and LASSO penalization. Econometrics and Statistics 1 150-166. · doi:10.1016/j.ecosta.2016.09.005
[38] MÜLLER, H. G. and STADTMÜLLER, U. (2005). Generalized functional linear models. The Annals of Statistics 33 774-805. · Zbl 1068.62048 · doi:10.1214/009053604000001156
[39] MURPHY, K. P. (2012). Machine Learning: A Probabilistic Perspective. Adaptive Computation and Machine Learning series. MIT Press. · Zbl 1295.68003
[40] PAPARODITIS, E. and SHANG, H. L. (2021). Bootstrap Prediction Bands for Functional Time Series. Journal of the American Statistical Association. · Zbl 07707216 · doi:10.1080/01621459.2021.1963262
[41] PUMO, B. (1999). Prediction of Continuous Time Processes by C[0,1]-Valued Autoregressive Process. Statistical Inference for Stochastic Processes 1 297-309. · Zbl 0944.62087 · doi:10.1023/a:1009951104780
[42] RAMSAY, J. O., GRAVES, S. and HOOKER, G. (2020). fda: Functional Data Analysis R package version 5.1.9. · Zbl 1179.62006
[43] RAMSAY, J. O. and SILVERMAN, B. W. (2005). Functional Data Analysis, 2nd ed. ed. Springer. · Zbl 1079.62006
[44] RUIZ-MEDINA, M. D. and ÁLVAREZ-LIÉBANA, J. (2019). Strongly consistent autoregressive predictors in abstract Banach spaces. Journal of Multivariate Analysis 170 186-201. · Zbl 1481.62064 · doi:10.1016/j.jmva.2018.08.001
[45] SANG, P. and CAO, J. (2020). Functional single-index quantile regression models. Statistics and Computing 1-11. · Zbl 1447.62138 · doi:10.1007/s11222-019-09917-6
[46] TAKÁCS, L. (1995). On the Local Time of the Brownian Motion. The Annals of Applied Probability 5. · Zbl 0845.60082 · doi:10.1214/aoap/1177004703
[47] TALAGRAND, M. (2014). Upper and lower bounds for stochastic processes: modern methods and classical problems 60. Springer Science & Business Media. · Zbl 1293.60001
[48] VILAR, J. M., CAO, R. and ANEIROS, G. (2012). Forecasting next-day electricity demand and price using nonparametric functional methods. International Journal of Electrical Power & Energy Systems 39 48-55. · doi:10.1016/j.ijepes.2012.01.004
[49] Wang, J.-L., Chiou, J.-M. and Müller, H.-G. (2016). Functional Data Analysis. Annual Review of Statistics and its Application 3 257-295.
[50] XIONG, S. and LI, G. (2008). Some results on the convergence of conditional distributions. Statistics & Probability Letters 78 3249-3253. · Zbl 1489.60005 · doi:10.1016/j.spl.2008.06.026
[51] YAO, F., SUE-CHEE, S. and WANG, F. (2017). Regularized partially functional quantile regression. Journal of Multivariate Analysis 156 39-56. · Zbl 1369.62083 · doi:10.1016/j.jmva.2017.02.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.