×

Self-similar \(p\)-adic fractal strings and their complex dimensions. (English) Zbl 1187.28014

Summary: We develop a geometric theory of self-similar \(p\)-adic fractal strings and their complex dimensions. We obtain a closed-form formula for the geometric zeta functions and show that these zeta functions are rational functions in an appropriate variable. We also prove that every self-similar \(p\)-adic fractal string is lattice. Finally, we define the notion of a nonarchimedean self-similar set and discuss its relationship with that of a self-similar \(p\)-adic fractal string. We illustrate the general theory by two simple examples, the nonarchimedean Cantor and Fibonacci strings.

MSC:

28A80 Fractals
37P20 Dynamical systems over non-Archimedean local ground fields
11S40 Zeta functions and \(L\)-functions
Full Text: DOI

References:

[1] V.G. Berkovich, ”p-adic analytic spaces,” in Proc. Internat. Congress Math. (Berlin, 1998), Eds. G. Fisher and U. Rehmann, Vol. II, Documenta Math. J. DMV (Extra Volume ICM’ 98), pp. 141–151. · Zbl 0949.14010
[2] D. V. Chistyakov, ”Fractal geometry of continuous embeddings of p-adic numbers into Euclidean spaces,” Theor. Math. Phys. 109, 1495–1507 (1996). · Zbl 0937.28007 · doi:10.1007/BF02073866
[3] A. Ducros, ”Espaces analytiques p-adiques au sens de Berkovich,” In: Séminaire Bourbaki, 58ème année, 2005–2006, No. 958, Astérisque, Vol. 311, pp. 137–176 (Société Mathématique de France, Paris, 2007).
[4] B. Dragovich, ”Adelic harmonic oscillator,” Int. J. Mod. Phys. A 10, 2349–2365 (1995). · Zbl 1044.81585 · doi:10.1142/S0217751X95001145
[5] C. J. Everett and S. Ulam, ”On some possibilities of generalizing the Lorentz group in the special relativity theory,” J. Combinatorial Theory 1, 248–270 (1966). · Zbl 0152.45603 · doi:10.1016/S0021-9800(66)80031-5
[6] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, Chichester, 1990).
[7] G.W. Gibbons and S.W. Hawking, (Eds.), Euclidean Quantum Gravity (World Scientific Publ., Singapore, 1993). · Zbl 0874.53056
[8] S. W. Hawking and W. Israel, (Eds.), General Relativity: An Einstein Centenary Survey (Cambridge Univ. Press, Cambridge, 1979). · Zbl 0424.53001
[9] J. E. Hutchinson, ”Fractals and self-similarity,” Indiana Univ. Math. J. 30, 713–747 (1981). · Zbl 0598.28011 · doi:10.1512/iumj.1981.30.30055
[10] N. Koblitz, p-Adic Numbers, p-Adic Analysis, and Zeta-Functions (Springer-Verlag, New York, 1984). · Zbl 0364.12015
[11] M. L. Lapidus, ”Spectral and fractal geometry: From the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function,” in Differential Equations and Mathematical Physics (Birmingham, 1990), C. Bennewitz (Ed.), pp. 151–182 (Academic Press, New York, 1992). · Zbl 0736.58040
[12] M. L. Lapidus, In Search of the Riemann Zeros: Strings, Fractal Membranes and Noncommutative Spacetimes (Amer. Math. Soc., Providence, RI, 2008). · Zbl 1150.11003
[13] M. L. Lapidus and Lũ’ Hùng, ”Nonarchimedean Cantor set and string,” J. Fixed Point Theory Appl. 3, 181–190 (2008). (Special issue dedicated to the Jubilee of Vladimir Arnold, Vol. I.) Preprint, IHES/M/08/28. · Zbl 1234.28011 · doi:10.1007/s11784-008-0062-9
[14] M. L. Lapidus and Lũ’ Hùng, ”A geometric theory of p-adic fractal strings and their complex dimensions,” in preparation. · Zbl 1276.37053
[15] M. L. Lapidus and H. Maier, ”The Riemann hypothesis and inverse spectral problems for fractal strings,” J. London Math. Soc. 52(2), 15–34 (1995). · Zbl 0836.11031 · doi:10.1112/jlms/52.1.15
[16] M. L. Lapidus and R. Nest, ”Fractal membranes as the second quantization of fractal strings,” in preparation.
[17] M. L. Lapidus and E. P. J. Pearse, ”Tube formulas and complex dimensions of self-similar tilings,” Preprint, IHES/M/08/27. · Zbl 1244.28013
[18] M. L. Lapidus and E. P. J. Pearse, ”Tube formulas for self-similar fractals,” in Analysis on Graphs and Its Applications (P. Exner et al., eds.), Proc. Sympos. Pure Math., Vol. 77, pp. 211–230 (Amer. Math. Soc., Providence, RI, 2008). Preprint, IHES/M/08/28. · Zbl 1157.28001
[19] M. L. Lapidus and C. Pomerance, ”The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums,” Proc. London Math. Soc. 66(3), 41–69 (1993). · Zbl 0739.34065 · doi:10.1112/plms/s3-66.1.41
[20] M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions (Birkhhäuser, Boston, 2000). · Zbl 0981.28005
[21] M. L. Lapidus and M. van Frankenhuijsen, Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings, Springer Monographs in Mathematics (Springer-Verlag, New York, 2006). · Zbl 1119.28005
[22] Lũ’ Hùng, p-Adic Fractal Strings and Their Complex Dimensions, Ph.D. Dissertation (University of California, Riverside, 2007).
[23] P. A. P. Moran, ”Additive functions of intervals and Hausdorff measure,” Math. Proc. Cambridge Philos. Soc. 42, 15–23 (1946). · Zbl 0063.04088 · doi:10.1017/S0305004100022684
[24] M. S. Moslehian and G. Sadeghi, ”A Mazur-Ulam theorem in non-archimedean normed spaces,” Nonlinear Anal. 69, 3405–3408 (2008); arXiv:0710.0107v1. · Zbl 1160.46049 · doi:10.1016/j.na.2007.09.023
[25] J. Neukirch, Algebraic Number Theory, A Series of Comprehensive Studies in Mathematics (Springer-Verlag, New York, 1999). · Zbl 0956.11021
[26] L. Notale, Fractal Spacetime and Microphysics: Towards a Theory of Scale Relativity (World Scientific Publ., Singapore, 1993).
[27] A. N. Parshin and I. R. Shafarevich, (Eds.), Number Theory, Vol. I, Introduction to Number Theory, Encyclopedia of Mathematical Sciences, Vol. 49, written by Yu. I. Manin and A. A. Panchishkin (Springer-Verlag, Berlin, 1995).
[28] E. P. J. Pearse, ”Canonical self-similar tilings by iterated function systems,” Indiana Univ. Math. J. 58, 3151–3170 (2007). · Zbl 1143.28006 · doi:10.1512/iumj.2007.56.3220
[29] A. M. Robert, A Course in p-Adic Analysis, Graduate Texts in Mathematics (Springer-Verlag, New York, 2000). · Zbl 0947.11035
[30] W. H. Schikhof, Ultrametric Calculus: An Introduction to p-Adic Analysis, Cambridge Studies in Advanced Mathematics (Cambridge Univ. Press, Cambridge, 1984). · Zbl 0553.26006
[31] V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific Publ., Singapore, 1994). · Zbl 0812.46076
[32] I. V. Volovich, ”Number theory as the ultimate physical theory,” Preprint, CERN-TH. 4791 (1987). · Zbl 1258.81074
[33] J. A. Wheeler and K.W. Ford, Geons, Black Holes, and Quantum Foam: A Life in Physics (W. W. Norton, New York, 1998). · Zbl 0953.01023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.