×

An arithmetic enrichment of Bézout’s theorem. (English) Zbl 1467.14126

Summary: The classical version of Bézout’s Theorem gives an integer-valued count of the intersection points of hypersurfaces in projective space over an algebraically closed field. Using work of J. L. Kass and K. Wickelgren [Compos. Math. 157, No. 4, 677–709 (2021; Zbl 1477.14085)], we prove a version of Bézout’s Theorem over any perfect field by giving a bilinear form-valued count of the intersection points of hypersurfaces in projective space. Over non-algebraically closed fields, this enriched Bézout’s Theorem imposes a relation on the gradients of the hypersurfaces at their intersection points. As corollaries, we obtain arithmetic-geometric versions of Bézout’s Theorem over the reals, rationals, and finite fields of odd characteristic.

MSC:

14N15 Classical problems, Schubert calculus
14F42 Motivic cohomology; motivic homotopy theory
11E81 Algebraic theory of quadratic forms; Witt groups and rings

Citations:

Zbl 1477.14085

References:

[1] Asok, A.; Fasel, J., Comparing Euler classes, Q. J. Math., 67, 4, 603-635 (2016) · Zbl 1372.14013
[2] Bayer-Fluckiger, E.; Lenstra, HW, Forms in odd degree extensions and self-dual normal bases, Am. J. Math., 112, 3, 359-373 (1990) · Zbl 0729.12006 · doi:10.2307/2374746
[3] Bethea, C.; Kass, JL; Wickelgren, K., Examples of wild ramification in an enriched Riemann-Hurwitz formula, Motivic Homotopy Theory and Refined Enumerative Geometry, Volume 745 of Contemporary Mathematics, 69-82 (2020), Providence: American Mathematical Society, Providence · Zbl 1441.14076 · doi:10.1090/conm/745/15022
[4] Barge, J.; Morel, F., Groupe de Chow des cycles orientés et classe d’Euler des fibrés vectoriels, C. R. Acad. Sci. Paris Sér. I Math., 330, 4, 287-290 (2000) · Zbl 1017.14001 · doi:10.1016/S0764-4442(00)00158-0
[5] Bachmann, T., Wickelgren, K.: \({\bf A}^1\)-Euler classes: six functors formalisms, dualities, integrality and linear subspaces of complete intersections. arXiv e-prints (2020)
[6] Chen, K-T, On the Bezout theorem, Am. J. Math., 106, 3, 725-744 (1984) · Zbl 0594.14001 · doi:10.2307/2374293
[7] Cassou-Noguès, P., Chinburg, T., Morin, B., Taylor, M.J.: On the trace forms of Galois algebras (2017) · Zbl 1446.11056
[8] Connor, PE; Perlis, R., A Survey of Trace Forms of Algebraic Number Fields***Series in Pure Mathematics (1984), Singapore: World Scientific Publishing Co., Singapore · Zbl 0551.10017 · doi:10.1142/0066
[9] Eisenbud, D.; Harris, J., 3264 and All That: A Second Course in Algebraic Geometry (2016), Cambridge: Cambridge University Press, Cambridge · Zbl 1341.14001 · doi:10.1017/CBO9781139062046
[10] Eisenbud, D., An algebraic approach to the topological degree of a smooth map, Bull. Am. Math. Soc., 84, 5, 751-764 (1978) · Zbl 0425.55003 · doi:10.1090/S0002-9904-1978-14509-1
[11] Fasel, J., Groupes de Chow-Witt, Mém. Soc. Math. Fr. (N. S.), 113, viii+197 (2008) · Zbl 1190.14001
[12] Fulton, W., Intersection Theory, Volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] (1998), Berlin: Springer, Berlin · Zbl 0885.14002
[13] Ju Grigor’ev, D.; Ivanov, NV, On the Eisenbud-Levine formula over a perfect field, Dokl. Akad. Nauk SSSR, 252, 1, 24-27 (1980) · Zbl 0514.55005
[14] Goldschmidt, DM, Algebraic Functions and Projective Curves. Graduate Texts in Mathematics (2003), New York: Springer, New York · Zbl 1034.14011 · doi:10.1007/b97844
[15] Kass, J.L., Wickelgren, K.: An arithmetic count of the lines on a smooth cubic surface. arXiv e-prints (2017)
[16] Kass, JL; Wickelgren, K., The class of Eisenbud-Khimshiashvili-Levine is the local \({ A}^1\)-Brouwer degree, Duke Math. J., 168, 3, 429-469 (2019) · Zbl 1412.14014 · doi:10.1215/00127094-2018-0046
[17] Lam, TY, Introduction to Quadratic Forms Over Fields. Graduate Studies in Mathematics (2005), Providence: American Mathematical Society, Providence · Zbl 1068.11023
[18] Levine, M.: Toward an enumerative geometry with quadratic forms. arXiv:1703.03049 (arXiv e-prints) (2017)
[19] Levine, M., Motivic Euler characteristics and Witt-valued characteristic classes, Nagoya Math. J., 236, 251-310 (2019) · Zbl 1468.14048 · doi:10.1017/nmj.2019.6
[20] Larson, H., Vogt, I.: An enriched count of the bitangents to a smooth plane quartic curve. arXiv:1909.05945 (arXiv e-prints) (2019)
[21] Milnor, JW, Topology from the Differentiable Viewpoint. Based on Notes by David W. Weaver (1965), Charlottesville: The University Press of Virginia, Charlottesville · Zbl 1025.57002
[22] Morel, F., \( \mathbb{A}^1\)-algebraic topology over a field. Lecture Notes in Mathematics (2012), Heidelberg: Springer, Heidelberg · Zbl 1263.14003 · doi:10.1007/978-3-642-29514-0
[23] Serre, J-P, Local Fields, Volume 67 of Graduate Texts in Mathematics (1979), New York: Springer, New York · Zbl 0423.12016
[24] Igor, R., Basic Algebraic Geometry (2013), Heidelberg: Springer, Heidelberg · Zbl 1277.14002
[25] Storch, U.; Scheja, G., Über Spurfunktionen bei vollständigen Durchschnitten, J. Reine Angew. Math. (Crelles J.), 174-190, 1975 (1975) · Zbl 0316.13003
[26] The Stacks project authors: The Stacks project. https://stacks.math.columbia.edu (2020)
[27] Srinivasan, P., Wickelgren, K.: An arithmetic count of the lines meeting four lines in \(\mathbb{P}^3\). arXiv e-prints (2018)
[28] Wendt, M., Oriented Schubert calculus in Chow-Witt rings of Grassmannians, Motivic Homotopy Theory and Refined Enumerative Geometry, Volume 745 of Contemporary Mathematics, 217-267 (2020), Providence: American Mathematical Society, Providence · Zbl 1505.14011 · doi:10.1090/conm/745/15027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.